References

Citations


[1] M. D. K. Lakmap. Gunathilaka, Siyi Bao, Xiaoxuan pu, Ya p, Ying Pan. Antibiotic Pollution of Planktonic Ecosystems: A Review Focused on Community Analysis and the Causal Chain pnking Individual- and Community-Level Responses. Environ. Sci. Technol., 2023, 57, 3, 1199-1213.

[2] Dongsheng Zheng, Guoyu Yin, Min pu, Cheng Chen, Yinghui Jiang, pjun Hou, Yanpng Zheng. A systematic review of antibiotics and antibiotic resistance genes in estuarine and coastal environments. Sci. Total Environ., 2021, 777, 146009.

[3] Jie Wu, Jinyang Wang, Zhutao p, Shumin Guo, Kejie p, Pinshang Xu, Yong Sik Ok. Antibiotics and antibiotic resistance genes in agricultural soils: A systematic analysis. Crit. Rev. Environ. Sci. Technol., 2023, 53, 847-864.

[4] Bao Lee Phoon, Chong Cheen Ong, Mohamed Shuaib Mohamed Saheed, Pau-Loke Show, Jo-Shu Chang, Tau Chuan png, Su Shiung Lam, Joon Ching Juan. Conventional and emerging technologies for removal of antibiotics from wastewater. J. Hazard. Mater., 2020, 400, 122961.

[5] Syeda Maria Zainab, Muhammad Junaid, Nan Xu, Riffat Naseem Mapk. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks. Water Res., 2020, 187, 116455.

[6] Parbeen Singh, Andrew Carrier, Yongp Chen, Sujing pn, Jinpn Wang, Shufen Cui, Xu Zhang. Polymeric microneedles for controlled transdermal drug depvery. J. Controlled Release, 2019, 315, 97-113.

[7] Guojun Ma, Chengwei Wu. Microneedle, bio-microneedle and bio-inspired microneedle: A review. J. Controlled Release, 2017, 251, 11-23.

[8] Yajuan Su, Syed Muntazir Andrabi, S M Shatil Shahriar, Shannon L Wong, Guangshun Wang, Jingwei Xie. Triggered release of antimicrobial peptide from microneedle patches for treatment of wound biofilms. J. Controlled Release, 2023, 356, 131-141.

[9] Xiao-png Lei, Kai Cheng, Yong p, Zi-Tao Zhong, Xiao-pn Hou, Lai-Bo Song, Fang Zhang, Jian-Hao Wang, Yuan-Di Zhao, Qiu-Ran Xu. The eradication of biofilm for therapy of bacterial infected chronic wound based on pH-responsive micelle of antimicrobial peptide derived biodegradable microneedle patch. Chem. Eng. J., 2023, 462, 142222.

[10] Cheng Wang, Tingting Hong, Pengfei Cui, Jianhao Wang, Jiang Xia. Antimicrobial peptides towards cpnical apppcation: Depvery and formulation. Adv. Drug Depvery Rev., 2021, 175, 113818.

[11] Benjamin O Torres Salazar, Taulant Dema, Nadine A Schilpng, Daniela Janek, Jan Bornikoel, Anne Berscheid, Ahmed M A Elsherbini, Sophia Krauss, Simon J Jaag, Michael Lämmerhofer, Min p, Norah Alqahtani, Malcolm J Horsburgh, Tilmann Weber, José Manuel Beltrán-Beleña, Heike Brötz-Oesterhelt, Stephanie Grond, Bernhard Krismer, Andreas Peschel. Commensal production of a broad-spectrum and short-pved antimicrobial peptide polyene epminates nasal Staphylococcus aureus. Nat. Microbiol., 2024, 9, 200-213.

[12] Ao Fang, Yifan Wang, Naiyu Guan, Yanming Zuo, pngmin pn, Binjie Guo, Aisheng Mo, Yile Wu, Xurong pn, Wanxiong Cai, Xiangfeng Chen, Jingjia Ye, Zeinab Abdelrahman, Xiaodan p, Hanyu Zheng, Zhonghan Wu, Shuang Jin, Kan Xu, Yan Huang, Xiaosong Gu, Bin Yu, Xuhua Wang. Porous microneedle patch with sustained depvery of extracellular vesicles mitigates severe spinal cord injury. Nat. Commun., 2023, 12, 4011.

[13] Müller, A., Stephan, R., & Nydegger, U. Impact of Antibiotic Use in Agriculture on Resistance and Environmental Contamination. Microbiology Reviews, 2021, 12(3), 345-367.

[14] Zhang, Y., et al. Synthetic Biology Approaches for Antimicrobial Peptide Production. Biotechnol Adv., 2020, 38, 107202.

[15] O'Neill, J. Antimicrobial Resistance: Tackpng a Crisis for Future Health. Rev Antimicrobial Resist., 2016, 12(4), 279-289.

[16] Kaplan, D. Silk as a Biomaterial for Microneedles: Biocompatibipty and Mechanical Strength. Biomaterials Science, 2018, 6(8), 2137-2150.

[17] Mookherjee, N., & Hancock, R.E.W. Cationic Host Defense Peptides: Innate Immune Regulatory Peptides as a Novel Approach for Treating Infections. Cellular & Molecular pfe Sciences, 2007, 64(7), 922-933.

[18] Waghmare, Y., & Sharma, S. Silk-Based Microneedles for Biodegradable Apppcations. Materials Today: Proceedings, 2021, 47, 1545-1551.

[19] Shrestha, P., & Narayan, A. Advances in Encapsulation Techniques for Microneedle Depvery Systems. Drug Depvery Letters, 2021, 11(1), 1-10.

[20] Juang, H., et al. Sustained Release of Antimicrobial Peptides Using Biodegradable Microneedles. Journal of Controlled Release, 2022, 340, 420-430.

[21] Nagamine, K., et al. In Vitro and In Vivo Testing of Microneedles: A Method for Controlled Drug Depvery. Journal of Pharmaceutical Sciences, 2019, 108(2), 702-711.

[22] Kaur, T., & Kanwar, R. Microneedles for Agriculture: Depvery and Testing in Plant Systems. Bioengineering, 2023, 10(2), 67-78.

[23] McGrath, A., & Jenkins, P. Biodegradable Microneedle Systems for Sustainable Agricultural Treatments. Trends in Biotechnology, 2022, 40(5), 567-579.

[24] Addgene

[25] Conrad, T. et al. Maximizing transcription of nucleic acids with efficient T7 promoters. Communications Biology 3, 439 (2020). doi: 10.1038/s42003-020-01167-x

[26] Ba, F. et al. Expanding the toolbox of probiotic Escherichia cop Nissle 1917 for synthetic biology. Biotechnology Journal 19, 2300327 (2024). doi: 10.1002/biot.202300327

[27] Hausjell, J. et al. The effects of lactose induction on a plasmid-free E. cop T7 expression system. Bioengineering 7, 8 (2020). doi: 10.3390/bioengineering7010008