Modelling

OVERVIEW


The need for a computational model

We are in an age where experimental data required to solve certain problems is already available; many interactomes are studied, and the data is ever-increasing. The simplest of mathematical or computational models uses some of these available datasets, applies mathematical relations (mostly correlated to the available experimental data), and predicts the outcomes if some of the parameters of the experiments were changed. This approach helps us predict what outcomes we would get from experiments and also helps us improve their design, reduce the number of trials, and test extremities. The modelling approaches that we would be working with are:

  1. Metabolic Modelling: It involves an interactome of metabolites in a biological organism known as GSMM (Genome-scale Metabolic Model) and analysis of the metabolic pathways using Flux Balance analysis (FBA).
  2. Structural Modelling: We used AlphaFold2 to predict the structures of our engineered proteins and performed molecular docking with their respective substrates to study the catalytic domains.

Metabolic Modelling
Structural Modelling

Metabolic Modelling

  1. Puchałka J, Oberhardt MA, Godinho M, Bielecka A, Regenhardt D, Timmis KN, Papin JA, Martins dos Santos VA. Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology. PLoS Comput Biol. 2008 Oct;4(10):e1000210. doi: 10.1371/journal.pcbi.1000210. Epub 2008 Oct 31. PMID: 18974823; PMCID: PMC2563689.
  2. Yuan Q, Huang T, Li P, Hao T, Li F, Ma H, Wang Z, Zhao X, Chen T, Goryanin I. Pathway-Consensus Approach to Metabolic Network Reconstruction for Pseudomonas putida KT2440 by Systematic Comparison of Published Models. PLoS One. 2017 Jan 13;12(1):e0169437. doi: 10.1371/journal.pone.0169437. PMID: 28085902; PMCID: PMC5234801.
  3. Nogales J, Mueller J, Gudmundsson S, Canalejo FJ, Duque E, Monk J, Feist AM, Ramos JL, Niu W, Palsson BO. High-quality genome-scale metabolic modelling of Pseudomonas putida highlights its broad metabolic capabilities. Environ Microbiol. 2020 Jan;22(1):255-269. doi: 10.1111/1462-2920.14843. Epub 2019 Nov 11. PMID: 31657101; PMCID: PMC7078882.
  4. Schneider P, Bekiaris PS, von Kamp A, Klamt S. StrainDesign: a comprehensive Python package for computational design of metabolic networks. Bioinformatics. 2022 Oct 31;38(21):4981-4983. doi: 10.1093/bioinformatics/btac632. PMID: 36111857; PMCID: PMC9620819.
  5. Hernandez-Arranz S, Perez-Gil J, Marshall-Sabey D, Rodriguez-Concepcion M. Engineering Pseudomonas putida for isoprenoid production by manipulating endogenous and shunt pathways supplying precursors. Microb Cell Fact. 2019 Sep 9;18(1):152. doi: 10.1186/s12934-019-1204-z. PMID: 31500633; PMCID: PMC6734295.
  6. Franden MA, Jayakody LN, Li WJ, Wagner NJ, Cleveland NS, Michener WE, Hauer B, Blank LM, Wierckx N, Klebensberger J, Beckham GT. Engineering Pseudomonas putida KT2440 for efficient ethylene glycol utilisation. Metab Eng. 2018 Jul;48:197-207. doi: 10.1016/j.ymben.2018.06.003. Epub 2018 Jun 7. Erratum in: Metab Eng. 2021 May;65:263-265. doi: 10.1016/j.ymben.2021.01.001. PMID: 29885475.

Metabolic Modelling

  1. Stevens AO, He Y. Benchmarking the Accuracy of AlphaFold 2 in Loop Structure Prediction. Biomolecules. 2022 Jul 14;12(7):98
  2. 5. doi: 10.3390/biom12070985. PMID: 35883541; PMCID: PMC9312937.
  3. Syed K, Mashele SS. Comparative analysis of P450 signature motifs EXXR and CXG in the large and diverse kingdom of fungi: identification of evolutionarily conserved amino acid patterns characteristic of P450 family. PLoS One. 2014 Apr 17;9(4):e95616. doi: 10.1371/journal.pone.0095616. PMID: 24743800; PMCID: PMC3990721.
  4. J.Gasteiger, M. Marseli, Iterative Equalization of Oribital Electronegatiity A Rapid Access to Atomic Charges, Tetrahedron Vol 36 p3219 1980
  5. Morris, G. M., Huey, R., Lindstrom, W., et al. (2009). AutoDock Tools 1.5.6 User Guide. Scripps Research Institute. Available at: AutoDock .
  6. Forli, S., Huey, R., Pique, M. E., et al. (2016). Computational Docking of Ligands to Proteins with AutoDock-GPU. Journal of Computational Chemistry, 37(16), 1627-1636. doi: 10.1002/jcc.24392.
  7. Corso, Gabriele, Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi Jaakkola. “Diffdock: Dif https://arxiv.org/abs/2210.01776fusion steps, twists, and turns for molecular docking.” arXiv preprint arXiv:2210.01776 (2022)
  8. Schrodinger, LLC. (2020). The PyMOL Molecular Graphics System, Version 2.4. Available at: PyMOL.
  9. Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E. and Hutchison, G.R. (2012) Avogadro: An Advanced Semantic Chemical Editor, Visualisation, and Analysis Platform. Journal of Cheminformatics, 4, 17.
    http://dx.doi.org/10.1186/1758-2946-4-17
  10. Meng EC, Goddard TD, Pettersen EF, Couch GS, Pearson ZJ, Morris JH, et al. UCSF ChimeraX: Tools for structure building and analysis. Protein Science. 2023; 32(11):e4792. https://doi.org/10.1002/pro.4792
  11. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualisation system for exploratory research and analysis Journal of Computational Chemistry, 25(13), 1605-1612
  12. Celedon JM, Chiang A, Yuen MM, Diaz-Chavez ML, Madilao LL, Finnegan PM, Barbour EL, Bohlmann J. Heartwood-specific transcriptome and metabolite signatures of tropical sandalwood (Santalum album) reveal the final step of (Z)-santalol fragrance biosynthesis. Plant J. 2016 May;86(4):289-99. doi: 10.1111/tpj.13162. Epub 2016 Apr 15. PMID: 26991058
  13. https://web.expasy.org/protscale/pscale/Transmembranetendency.html
  14. https://web.expasy.org/protparam/