References
[1] Chu, J. N. & Traverso, G. Foundations of gastrointestinal-based drug delivery and future developments. Nat Rev Gastroenterol Hepatol 19, 219-238 (2022).
[2] Xu, Y., Shrestha, N., Préat, V. & Beloqui, A. Overcoming the intestinal barrier: A look into targeting approaches for improved oral drug delivery systems. Journal of Controlled Release 322, 486-508 (2020).
[3] De Geest, S. & Sabaté, E. Adherence to Long-Term Therapies: Evidence for Action. European Journal of Cardiovascular Nursing 2, 323-323 (2003).
[4] Altreuter, D. et al. Changing the pill: developments towards the promise of an ultra long-acting gastroretentive dosage form. Expert Opin Drug Deliv 15, 1189-1198 (2018).
[5] Daniel, H. Molecular and Integrative Physiology of Intestinal Peptide Transport. Annu. Rev. Physiol. 66, 361-384 (2004).
[6] Kiela, P. R. & Ghishan, F. K. Physiology of Intestinal Absorption and Secretion. Best Practice & Research Clinical Gastroenterology 30, 145-159 (2016).
[7] Murali, S. K. & Mansell, T. J. Next generation probiotics: Engineering live biotherapeutics. Biotechnology Advances 72, 108336 (2024).
[8] Li, C., Wang, Z.-X., Xiao, H. & Wu, F.-G. Intestinal Delivery of Probiotics: Materials, Strategies, and Applications. Advanced Materials 36, 2310174 (2024).
[9] Girija, A. R. Peptide nutraceuticals. in Peptide Applications in Biomedicine, Biotechnology and Bioengineering 157-181 (Elsevier, 2018)
[10] Kiewiet, M. B. G., Faas, M. M. & De Vos, P. Immunomodulatory Protein Hydrolysates and Their Application. Nutrients 10, 904 (2018).
[11] Bruno, B. J., Miller, G. D. & Lim, C. S. Basics and recent advances in peptide and protein drug delivery. Ther Deliv 4, 1443-1467 (2013).
[12] Cruzat, V., Macedo Rogero, M., Noel Keane, K., Curi, R. & Newsholme, P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients 10, 1564 (2018).
[13] Zhang, J. et al. Effects of Short-Peptide-Based Enteral Nutrition on the Intestinal Microcirculation and Mucosal Barrier in Mice with Severe Acute Pancreatitis. Molecular Nutrition & Food Research 64, 1901191 (2020).
[14] Otto, C. et al. Antidiabetic Effects of a Tripeptide That Decreases Abundance of Na+-D-glucose Cotransporter SGLT1 in the Brush-Border Membrane of the Small Intestine. ACS Omega (2020).
[15] Ishida N, Saito M, Sato S, Tezuka Y, Sanbe A, Taira E, Hirose M. Mizagliflozin, a selective SGLT1 inhibitor, improves vascular cognitive impairment in a mouse model of small vessel disease. Pharmacol Res Perspect. 2021 Oct;9(5):e00869. doi: 10.1002/prp2.869.
[16] Cruzat V, Macedo Rogero M, Noel Keane K, Curi R, Newsholme P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients. 2018 Oct 23;10(11):1564. doi: 10.3390/nu10111564.
[17] Fläring UB, Rooyackers OE, Wernerman J, Hammarqvist F. Glutamine attenuates post-traumatic glutathione depletion in human muscle. Clin Sci (Lond). 2003 Mar;104(3):275-82. doi: 10.1042/CS20020198.
[18] Rodas PC, Rooyackers O, Hebert C, Norberg Å, Wernerman J. Glutamine and glutathione at ICU admission in relation to outcome. Clin Sci (Lond). 2012 Jun;122(12):591-7. doi: 10.1042/CS20110520.
[19] Leite JS, Raizel R, Hypólito TM, Rosa TD, Cruzat VF, Tirapegui J. l-glutamine and l-alanine supplementation increase glutamine-glutathione axis and muscle HSP-27 in rats trained using a progressive high-intensity resistance exercise. Appl Physiol Nutr Metab. 2016 Aug;41(8):842-849. doi: 10.1139/apnm-2016-0049.
[20] Cruzat VF, Rogero MM, Tirapegui J. Effects of supplementation with free glutamine and the dipeptide alanyl-glutamine on parameters of muscle damage and inflammation in rats submitted to prolonged exercise. Cell Biochem Funct. 2010 Jan;28(1):24-30. doi: 10.1002/cbf.1611.
[21] J C Hall, K Heel, R McCauley, Glutamine, British Journal of Surgery, Volume 83, Issue 3, March 1996, Pages 305-312.
[22] Mills EL, Kelly B, O'Neill LAJ. Mitochondria are the powerhouses of immunity. Nat Immunol. 2017 Apr 18;18(5):488-498. doi: 10.1038/ni.3704.
[23] Ramezani Ahmadi A, Rayyani E, Bahreini M, Mansoori A. The effect of glutamine supplementation on athletic performance, body composition, and immune function: A systematic review and a meta-analysis of clinical trials. Clin Nutr. 2019 Jun;38(3):1076-1091. doi: 10.1016/j.clnu.2018.05.001.
[24] Vargason AM, Anselmo AC, Mitragotri S. The evolution of commercial drug delivery technologies. Nat Biomed Eng. 2021;5(9):951-967. doi:10.1038/s41551-021-00698-w
[25] Nicchi, S. et al. Decorating the surface of Escherichia coli with bacterial lipoproteins: a comparative analysis of different display systems. Microb Cell Fact 20, 1-14 (2021).
[26] Glass, D. S. & Riedel-Kruse, I. H. A Synthetic Bacterial Cell-Cell Adhesion Toolbox for Programming Multicellular Morphologies and Patterns. Cell 174, 649-658.e16 (2018).
[27] Drolia, R. et al. Receptor-targeted engineered probiotics mitigate lethal Listeria infection. Nat Commun 11, 6344 (2020).
[28] Balagaddé, F. K. et al. A synthetic Escherichia coli predator-prey ecosystem. Molecular Systems Biology 4, 187 (2008).
[29] Hwang, H. J., Kim, J. W., Ju, S. Y., Park, J. H. & Lee, P. C. Application of an oxygen-inducible nar promoter system in metabolic engineering for production of biochemicals in Escherichia coli. Biotech & Bioengineering 114, 468-473 (2017).
[30] Walker, M. S. & DeMoss, J. A. Role of alternative promoter elements in transcription from the nar promoter of Escherichia coli. J Bacteriol 174, 1119-1123 (1992).