2.1Raw data:
The ability of IL-18BPc-Fc protein to inhibit the production of IFN-γ in vitro was detected by cell experiments. The recombinant IL-18BPc-Fc protein was placed at-80 °C, -20 °C, 4 °C and 37 °C for 24 h, and the concentration of IFN-γ was detected at 0,0.5,1,1.5 and 2 μg / mL of recombinant IL-18BPc-Fc protein. The specific data are shown in Table 3 below.
Table 3 : At different temperatures, IL-18BPc-Fc protein inhibits the ability of cells to produce IFN-γ
IL18-BPc-Fc |
0 |
0.5 |
1 |
1.5 |
2 |
-80℃ |
282.6667 |
230.5 |
178.3334 |
106.6667 |
11.50001 |
279 |
226.6667 |
174.3333 |
107.1667 |
9.166658 |
282.6667 |
230.5 |
178.3334 |
106.6667 |
11.50001 |
-20℃ |
274.6667 |
244.4167 |
214.1667 |
140.1667 |
59.66667 |
271 |
241 |
211 |
136.5 |
57.00001 |
274.6667 |
244.4167 |
214.1667 |
140.1667 |
59.66667 |
4℃ |
291.6667 |
255.9167 |
220.1667 |
143 |
58.50001 |
289 |
252.8333 |
216.6666 |
140.6667 |
55.66668 |
291.6667 |
255.9167 |
220.1667 |
143 |
58.50001 |
37℃ |
281.5 |
266.5 |
251.5 |
219.5 |
189.6667 |
277 |
262.4167 |
247.8333 |
215.6667 |
186.5 |
281.5 |
266.5 |
251.5 |
219.5 |
189.6667 |
2.2 Data statistical analysis and output results :
Analysis steps :
A.Test the normality test of the variables separately to see whether the overall distribution of the data presents a normal distribution. If the test is passed, it is recommended to use analysis of variance.
B. View the Friedman test table, if it is significant, you can view the median to analyze the difference, otherwise it shows no difference.
C. If the Friedman test is significant, the difference can also be quantitatively analyzed by effect quantitative analysis.
Output result 1 : Normality test result
Table 4 shows the results of descriptive statistics and normality test of quantitative variables-80, -20,4,37, including mean, standard deviation, etc., to test the normality of the data.
There are two test methods for normal distribution. One is Shapiro-Wilk test, which is suitable for small sample data ( sample size ≤ 5000 ). The other is Kolmogorov-Smirnov test, which is suitable for large sample data ( sample size > 5000 ).
If it is significant ( P < 0.05 ), it indicates that the original hypothesis is rejected ( the data conforms to the normal distribution ), and the data does not satisfy the normal distribution.
PS : If the distribution is normal, analysis of variance is generally used.
Output Result 1 : Normality Test Results
Table 4. Normality Test Results
variable |
sample size |
mean value |
standard deviation |
bias angle |
kurtosis |
S-W test |
K-S test |
-80 |
5 |
161.044 |
105.989 |
-0.521 |
-0.561 |
0.977(0.915) |
0.16(0.997) |
-20 |
5 |
185.511 |
86.69 |
-0.795 |
-0.604 |
0.937(0.647) |
0.225(0.913) |
4 |
5 |
192.889 |
93.528 |
-0.72 |
-0.664 |
0.949(0.728) |
0.21(0.945) |
37 |
5 |
240.45 |
36.918 |
-0.6 |
-1.073 |
0.953(0.756) |
0.205(0.954) |
Note:***、**、*Represent 1 %, 5 %, 10 % significance level respectively.
Analysis items : -80 samples N < 5000, using S-W test, the significant P value is 0.915, the level does not show significant, can not reject the original hypothesis, so the data meet the normal distribution, it is recommended to use variance analysis.
Analysis item : -20 sample N < 5000, using S-W test, the significant P value is 0.647, the level does not show significant, can not reject the original hypothesis, so the data meet the normal distribution, it is recommended to use variance analysis.
Analysis items : 4 samples N < 5000, using S-W test, the significant P value is 0.728, the level does not show significant, can not reject the original hypothesis, so the data meet the normal distribution, it is recommended to use variance analysis.
Analysis items : 37 samples N < 5000, using S-W test, the significant P value is 0.756, the level does not show significant, can not reject the original hypothesis, so the data meet the normal distribution, it is recommended to use variance analysis.
Output result 2 : Normality test histogram
Figure 4 : Normality test histogram A.Represents the normal distribution result after-80 degree processing ; B, normal distribution results after -20 degree treatment ; C, the normal distribution results after 4 degree treatment ; D, normal distribution results after 37 degree treatment
Figure 4A, B, C and D show the results of data normality test. If the normal diagram basically presents a bell shape ( high in the middle and low at both ends ), it shows that the data is not absolutely normal, but it can be basically accepted as normal distribution.
2.3 Modeling process
Still use the double exponential model using the least square method:
y=ebx+cedx
Substitute the data fitting parameter values.
clear;clc;
IL18_BPc_Fc0=[0 0.5 1 1.5 2];
INF_80=[281.4444667 229.2222333 177.0000333 106.8333667 10.722226];
INF_20=[273.4444667 243.2778 213.1111333 138.9444667 58.77778333];
INF_4=[290.7778 254.8889 219 142.2222333 57.55556667];
INF_37=[280 265.1389 250.2777667 218.2222333 188.6111333];
%IL18-BPc-FcThe protein concentration of -80 °C fitting curve
[xData1, yData1] = prepareCurveData( IL18_BPc_Fc0, INF_80 );
ft1 = fittype( 'exp2' );
opts1 = fitoptions( 'Method', 'NonlinearLeastSquares' );
opts1.Display = 'Off';
opts1.StartPoint = [-1.50501331209517 2.21173241411546 279.050534524858 -0.372547424477234];
[fitresult1, gof] = fit( xData1, yData1, ft1, opts1 );
figure(1)
h1=plot( fitresult1);
h1.LineWidth = 1.2;
hold on
plot(xData1, yData1,'*','LineWidth',1.2)
hold off
%IL18-BPc-FcThe protein concentration of -20 °C fitting curve
[xData2, yData2] = prepareCurveData(IL18_BPc_Fc0, INF_20 );
ft2 = fittype( 'exp2' );
opts2 = fitoptions( 'Method', 'NonlinearLeastSquares' );
opts2.Display = 'Off';
opts2.StartPoint = [-0.00257403271040611 5.32478062325234 261.795774758923 -0.231754568400623];
[fitresult2, gof] = fit( xData2, yData2, ft2, opts2 );
figure(2)
h1=plot( fitresult2);
h1.LineWidth = 1.2;
hold on
plot(xData2, yData2,'*','LineWidth',1.2)
hold off
%IL18-BPc-Fc The fitting curve of protein concentration of c at 4 °C was obtained.
[xData3, yData3] = prepareCurveData( IL18_BPc_Fc0, INF_4 );
ft3 = fittype( 'exp2' );
opts3 = fitoptions( 'Method', 'NonlinearLeastSquares' );
opts3.Display = 'Off';
opts3.StartPoint = [-0.00977436663134554 4.67450597545503 279.732289055241 -0.259798842211822];
[fitresult3, gof] = fit( xData3, yData3, ft3, opts3 );
figure(3)
h3=plot( fitresult3);
h3.LineWidth = 1.2;
hold on
plot(xData3, yData3,'*','LineWidth',1.2)
hold off
%IL18-BpaThe protein concentration of 37 °C fitting curve
[xData4, yData4] = prepareCurveData( IL18_BPc_Fc0, INF_37 );
ft4 = fittype( 'exp2' );
opts4 = fitoptions( 'Method', 'NonlinearLeastSquares' );
opts4.Display = 'Off';
opts4.StartPoint = [-0.000123117598347532 6.2580174622426 275.424944279632 -0.108799909414148];
[fitresult4, gof] = fit( xData4, yData4, ft4, opts4 );
figure(4)
h4=plot( fitresult4);
h4.LineWidth = 1.2;
hold on
plot(xData4, yData4,'*','LineWidth',1.2)
hold off
%The results at four temperatures are compared.
figure(5)
h1=plot( fitresult1,'r');
h1.LineWidth = 1.2;
hold on
h2=plot( fitresult2,'b');
h2.LineWidth = 1.2;
h3=plot( fitresult3,'g');
h3.LineWidth = 1.2;
h4=plot( fitresult4,'k');
h4.LineWidth = 1.2;
grid on
hold off
Figure.5 Comparison of protein activity of IL18-BPc-Fc at different temperatures
According to the results of Figure.5, the data of IFN-γ showed a decreasing trend under four different temperature environments. It can be seen from the control diagram that the lower the temperature, the faster the rate of decline. Low temperature ( -80 °C and-20 °C ) did not affect the activity of protein IL18-BPc-Fc , and did not affect the inhibition of IFN-γ, but 4 °C and 37 °C affected the activity of protein IL18-BPc-Fc , but also inhibited IFN-γ. It shows that after 24 hh in the follow-up treatment process, the drug can be used again to improve the treatment effect.