References
[1] Ibero, J., Galán, B., & García, J. L. (2021). Identification of the EdcR Estrogen-Dependent Repressor in Caenibius tardaugens NBRC 16725: Construction of a Cellular Estradiol Biosensor. Genes, 12(12), 1846. https://doi.org/10.3390/genes12121846
[2] Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger, O., Willmore, L., Ballard, A. J., Bambrick, J., Bodenstein, S. W., Evans, D. A., Hung, C., O’Neill, M., Reiman, D., Tunyasuvunakool, K., Wu, Z., Žemgulytė, A., Arvaniti, E., . . . Jumper, J. M. (2024). Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 630(8016), 493-500.
https://doi.org/10.1038/s41586-024-07487-w
[3] Song, Y., DiMaio, F., Wang, R. Y. R., Kim, D., Miles, C., Brunette, T. J., ... & Baker, D. (2013). High-resolution comparative modeling with RosettaCM. Structure, 21(10), 1735-1742.
[4] Zhang, R., Wu, R., Moy, S., Cymborowski, M., Minor, W., Joachimiak, A., & Midwest Center for Structural Genomics (MCSG). (2006). The crystal structure of the transcriptional regulator (TetR family) from Bacillus cereus (PDB ID: 2FQ4). Protein Data Bank.
https://doi.org/10.2210/pdb2fq4/pdb
[5] Grabowski, M., Chruszcz, M., Koclega, K.D., Cymborowski, M., Gu, J., Xu, X., Savchenko, A., Edwards, A., Joachimiak, A., Minor, W., & Midwest Center for Structural Genomics (MCSG). (2006). Crystal structure of transcriptional regulator SCO5951 from Streptomyces coelicolor A3(2) (PDB ID: 2ID3). Protein Data Bank.
https://doi.org/10.2210/pdb2id3/pdb
[6] Okada, U., Kondo, K., Watanabe, N., Yao, M., & Tanaka, I. (2008). Crystal structure of TetR family transcription regulator SCO0332 (PDB ID: 2ZB9). Protein Data Bank.
https://doi.org/10.2210/pdb2zb9/pdb
[7] Joint Center for Structural Genomics (JCSG). (2011). Crystal structure of a TetR transcriptional regulator (Caur_2221) from Chloroflexus aurantiacus J-10-FL at 1.80 Å resolution (PDB ID: 3QBM). Protein Data Bank.
https://doi.org/10.2210/pdb3qbm/pdb
[8] Yang, S.F., Gao, Z.Q., He, Z.G., & Dong, Y.H. (2013). Crystal structure of ms6564 from Mycobacterium smegmatis (PDB ID: 4JKZ). Protein Data Bank.
https://doi.org/10.2210/pdb4jkz/pdb
[9] Rueda, A. J. V., Bulgarelli, F. L., Palopoli, N., & Parisi, G. (2023). CaviDB: a database of cavities and their features in the structural and conformational space of proteins. Database, 2023.
https://doi.org/10.1093/database/baad010
[10] Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal Of Computational Chemistry, 31(2), 455-461.
https://doi.org/10.1002/jcc.21334
[11] Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal Of Computational Chemistry, 25(13), 1605-1612.
https://doi.org/10.1002/jcc.20084
[12] Meiler, J., & Baker, D. (2006). ROSETTALIGAND: Protein–small molecule docking with full side‐chain flexibility. Proteins Structure Function And Bioinformatics, 65(3), 538-548.
https://doi.org/10.1002/prot.21086
[13] Lemmon, G., & Meiler, J. (2011). Rosetta Ligand Docking with Flexible XML Protocols. Methods In Molecular Biology, 143-155.
https://doi.org/10.1007/978-1-61779-465-0_10
[14] Jejurikar, B. L., & Rohane, S. H. (2021). Drug Designing in Discovery Studio. Asian Journal Of Research In Chemistry, 14(2), 135-138.
https://doi.org/10.5958/0974-4150.2021.00025.0
[15] Saenger, W., Hinrichs, W., Orth, P., Schnappinger, D., & Hillen, W. (2000). Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nature Structural & Molecular Biology, 7(3), 215-219.
https://doi.org/10.1038/73324
[16] Dimas, R. P., Jordan, B. R., Jiang, X., Martini, C., Glavy, J. S., Patterson, D. P., Morcos, F., & Chan, C. T. Y. (2019b). Engineering DNA recognition and allosteric response properties of TetR family proteins by using a module-swapping strategy. Nucleic Acids Research, 47(16), 8913-8925.
https://doi.org/10.1093/nar/gkz666
[17] Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005b). GROMACS: Fast, flexible, and free. Journal Of Computational Chemistry, 26(16), 1701-1718.
https://doi.org/10.1002/jcc.20291
[18] Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., De Groot, B. L., Grubmüller, H., & MacKerell, A. D. (2016). CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nature Methods, 14(1), 71-73.
https://doi.org/10.1038/nmeth.4067
[19] Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM‐GUI: A web‐based graphical user interface for CHARMM. Journal Of Computational Chemistry, 29(11), 1859-1865.
https://doi.org/10.1002/jcc.20945
[20] Valdés-Tresanco, M.S., Valdés-Tresanco, M.E., Valiente, P.A. and Moreno E. gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS. Journal of Chemical Theory and Computation, 2021 17 (10), 6281-6291.
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00645