[1]THE 17 GOALS | Sustainable Development. (n.d.).
https://sdgs.un.org/goals
[2]Jakubowska, M., Dobosz, R., Zawada, D., & Kowalska, J. (2022). A Review of Crop Protection Methods against the Twospotted Spider Mite—Tetranychus urticae Koch (Acari: Tetranychidae)—With Special Reference to Alternative Methods. Agriculture, 12(7), 898.
https://doi.org/10.3390/agriculture12070898
[3]Han, Y., Zhang, Y.-C., Ye, W.-N., Wang, S.-M., Wang, X., & Gao, C.-F. (2024). Increasing resistance of Tetranychus urticae to common acaricides in China and risk assessment to spiromesifen. Crop Protection, 176, 106519–106519.
https://doi.org/10.1016/j.cropro.2023.106519
[4]Agut, B., Pastor, V., Jaques, J., & Flors, V. (2018). Can Plant Defence Mechanisms Provide New Approaches for the Sustainable Control of the Two-Spotted Spider Mite Tetranychus urticae? International Journal of Molecular Sciences, 19(2), 614.
https://doi.org/10.3390/ijms19020614
[5]Lu, W., Wang, M., Xu, Z., Shen, G., Peng, W., Li, M., Reid, W., & He, L. (2017). Adaptation of acaricide stress facilitatesTetranychus urticaeexpanding againstTetranychus cinnabarinusin China. Ecology and Evolution, 7(4), 1233–1249.
https://doi.org/10.1002/ece3.2724
[6]Van Leeuwen, T., Vontas, J., Tsagkarakou, A., Dermauw, W., & Tirry, L. (2010). Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: A review. Insect Biochemistry and Molecular Biology, 40(8), 563–572.
https://doi.org/10.1016/j.ibmb.2010.05.008
[7]United Nations. (2022). Goal 2 | Department of Economic and Social Affairs. Sdgs.un.org; United Nations.
https://sdgs.un.org/goals/goal2
[8]M. H. Dawood and J. C. Snyder, “The alcohol and epoxy alcohol of zingiberene, produced in trichomes of wild tomato, are more repellent to spider mites than zingiberene,” Frontiers in Plant Science, vol. 11, Feb. 2020,
doi: 10.3389/fpls.2020.00035
[9] Guo, R.; Guo, G.; Wang, A.; Xu, G.; Lai, R.; Jin, H. Spider-Venom Peptides: Structure, Bioactivity, Strategy, and Research Applications. Molecules2024,29,35.
https:// doi.org/10.3390/molecules29010035
[10]Windley, M. J., Herzig, V., Dziemborowicz, S. A., Hardy, M. C., King, G. F., & Nicholson, G. M. (2012). Spider-Venom Peptides as Bioinsecticides. Toxins, 4(3), 191–227.
https://doi.org/10.3390/toxins4030191
[11]Cai, Zengying, et al. “Efficient Expression and Purification of Soluble HarpinEa Protein by Translation Initiation Region Codon Optimization.” Protein Expression and Purification, vol. 188, Dec. 2021, p. 105970. DOI.org (Crossref),
https://doi.org/10.1016/j.pep.2021.105970.
[12]US EPA. (2019, February 19). What is a Pesticide? | US EPA. US EPA.
https://www.epa.gov/minimum-risk-pesticides/what-pesticide
[13] Rani, L., Thapa, K., Kanojia, N., Sharma, N., Singh, S., Grewal, A. S., Srivastav, A. L., & Kaushal, J. (2020). An extensive review on the consequences of chemical pesticides on human health and environment. Journal of Cleaner Production, 283(124657), 124657.
https://doi.org/10.1016/j.jclepro.2020.124657
[14] Zhou, W., Li, M., & Achal, V. (2024). A comprehensive review on environmental and human health impacts of chemical pesticide usage. Emerging Contaminants, 100410.
https://doi.org/10.1016/j.emcon.2024.100410
[15]Grewal, A., Singla, A., Kamboj, P., & Dua, J. S. (2017). Pesticide residues in food grains, vegetables and fruits: a hazard to human health.
https://www.semanticscholar.org/paper/Pesticide-Residues-in-Food-Grains%2C-Vegetables-and-A-Grewal-Singla/3b00edf05db1119975cc2aca1d657a8e7d2ac0fb?p2df
[16]El-Nahhal, I., & El-Nahhal, Y. (2021). Pesticide residues in drinking water, their potential risk to human health and removal options. Journal of Environmental Management, 299, 113611.
https://doi.org/10.1016/j.jenvman.2021.113611
[17]Goal 3 | Department of Economic and Social Affairs. (n.d.).
https://sdgs.un.org/goals/goal3
[18]Nur Afiqah Sukiran, Prashant Pyati, Willis, C. E., Brown, A. P., Readshaw, J. J., & Fitches, E. C. (2022). Enhancing the oral and topical insecticidal efficacy of a commercialized spider venom peptide biopesticide via fusion to the carrier snowdrop lectin (Galanthus nivalis agglutinin). Pest Management Science, 79(1), 284–294.
https://doi.org/10.1002/ps.7198
[19]Yu, N., Yan, Y., Han, Q., Zhang, L., & Liu, Z. (2023). Insecticidal toxicity of ω‐Atypitoxin‐Cs1a and its inhibitory effects on insect voltage‐gated calcium channels. Pest Management Science, 79(12), 4879–4885.
https://doi.org/10.1002/ps.7689
[20]Vásquez-Escobar, J., Dora María Benjumea-Gutiérrez, Lopera, C., Clement, H. C., Bolaños, D. I., Jorge Luis Higuita-Castro, Corzo, G. A., & Ligia Luz Corrales-Garcia. (2023). Heterologous Expression of an Insecticidal Peptide Obtained from the Transcriptome of the Colombian Spider Phoneutria depilate. Toxins, 15(7), 436–436.
https://doi.org/10.3390/toxins15070436
[21] He, Z., Shen, K., Lan, M., & Weng, W. (2024). An evacuation path planning method for multi-hazard accidents in chemical industries based on risk perception. Reliability Engineering & System Safety, 244, 109912.
https://doi.org/10.1016/j.ress.2023.109912
[22] Chen, G., Liang, X., Zhou, L., & Men, J. (2022). A dynamic risk-based routing approach for multi-source and multi-sink evacuation problem in chemical industrial parks. Journal of Loss Prevention in the Process Industries, 77, 104760.
https://doi.org/10.1016/j.jlp.2022.104760
[23] Tickner, J., Geiser, K., & Baima, S. (2021). Transitioning the chemical industry: the case for addressing the climate, toxics, and plastics crises. Environment Science and Policy for Sustainable Development, 63(6), 4–15.
https://doi.org/10.1080/00139157.2021.1979857
[24] Making an important industrial synthesis more environmentally friendly. (2024, January 24). ScienceDaily.
https://www.sciencedaily.com/releases/2024/01/240111113025.htm
[25] Goal 9 | Department of Economic and Social Affairs. (n.d.). https://sdgs.un.org/goals/goal9#targets_and_indicators
https://sdgs.un.org/goals/goal9#targets_and_indicators
[26]United Nations. (2021, June). In Images: Plastic is Forever. United Nations. https://www.un.org/en/exhibits/exhibit/in-images-plastic-forever#:~:text=But%20when%20does%20plastic
[27]Hartmann, G. F., Ricachenevsky, F. K., Silveira, N. M., & Pita-Barbosa, A. (2022). Phytotoxic effects of plastic pollution in crops: what is the size of the problem? Environmental Pollution, 292, 118420.
https://doi.org/10.1016/j.envpol.2021.118420
[28]Stegmann, P., Daioglou, V., Londo, M., van Vuuren, D. P., & Junginger, M. (2022). Plastic futures and their CO2 emissions. Nature, 612(7939), 272–276.
https://doi.org/10.1038/s41586-022-05422-5
[29] Kumar, P., Kumar, R., Thakur, K., Mahajan, D., Brar, B., Sharma, D., Kumar, S., & Amit Kumar Sharma. (2023). Impact of Pesticides Application on Aquatic Ecosystem and Biodiversity: A Review. Biology Bulletin, 50(6), 1362–1375.
https://doi.org/10.1134/s1062359023601386
[30]Volume 24 (2023) – International Scientific Organization. (n.d.).
https://www.iscientific.org/volume-24-2023/ (Water Pollution from Agricultural Activities: A Critical Global Review, by Iqra Zahoor and Ayesha Mushtaq)
[31]Goal 6 | Department of Economic and Social Affairs. (n.d.).
https://sdgs.un.org/goals/goal6#targets_and_indicators
[32]Chen, Li, et al. ‘A Novel Spider Venom Peptide from the Predatory Mite Neoseiulus Barkeri Shows Lethal Effect on Phytophagous Pests’. Pesticide Biochemistry and Physiology, vol. 202, June 2024, p. 105963.
DOI.org (Crossref),
https://doi.org/10.1016/j.pestbp.2024.105963.