[1]Guo, Ruiyin, et al. ‘Spider-Venom Peptides: Structure, Bioactivity, Strategy, and Research Applications’. Molecules, vol. 29, no. 1, Dec. 2023, p. 35.
DOI.org (Crossref),
https://doi.org/10.3390/molecules29010035
[2]KEGG BRITE: Ion Channels - Tetranychus urticae (two-spotted spider mite). (n.d.).
https://www.kegg.jp/kegg-bin/show_brite?htext=tut04040&option=%2da&highlight=107370320&option=-a&selected=join-brite-kegg-1&extend=B6B8B14
[3]Zhu, T., Li, W., Xue, H., Dong, S., Wang, J., Shang, S., & Dewer, Y. (2023). Selection, Identification, and Transcript Expression Analysis of Antioxidant Enzyme Genes in Neoseiulus barkeri after Short-Term Heat Stress. Antioxidants, 12(11), 1998.
https://doi.org/10.3390/antiox12111998
[4]GenBank accession numbers: OR995725.1 and OR995726.1
[5]Phytoseiulus persimilis. (n.d.-b).
https://biocontrol.entomology.cornell.edu/predators/Phytoseiulus.php
[6]Salman, S. Y., & Keskin, C. (2019). The effects of milbemectin and spirodiclofen resistance on Phytoseiulus persimilis A. H. (Acari:Phytoseiidae) life table parameters. Crop Protection, 124, 104751.
https://doi.org/10.1016/j.cropro.2019.02.027
[7]Windley, M. J., Herzig, V., Dziemborowicz, S. A., Hardy, M. C., King, G. F., & Nicholson, G. M. (2012). Spider-Venom peptides as bioinsecticides. Toxins, 4(3), 191–227.
https://doi.org/10.3390/toxins4030191
[8]Yu, N., Yan, Y., Han, Q., Zhang, L., & Liu, Z. (2023). Insecticidal toxicity of ω‐Atypitoxin‐Cs1a and its inhibitory effects on insect voltage‐gated calcium channels. Pest Management Science, 79(12), 4879–4885.
https://doi.org/10.1002/ps.7689
[9]Vásquez-Escobar, J., Benjumea-Gutiérrez, D. M., Lopera, C., Clement, H. C., Bolaños, D. I., Higuita-Castro, J. L., Corzo, G. A., & Corrales-Garcia, L. L. (2023c). Heterologous Expression of an Insecticidal Peptide Obtained from the Transcriptome of the Colombian Spider Phoneutria depilate. Toxins, 15(7), 436.
https://doi.org/10.3390/toxins15070436
[10]Sukiran, N. A., Pyati, P., Willis, C. E., Brown, A. P., Readshaw, J. J., & Fitches, E. C. (2022). Enhancing the oral and topical insecticidal efficacy of a commercialized spider venom peptide biopesticide via fusion to the carrier snowdrop lectin (Galanthus nivalis agglutinin). Pest Management Science, 79(1), 284–294.
https://doi.org/10.1002/ps.7198
[11]Chen, L., Adang, M. J., & Shen, G. (2024a). A novel spider venom peptide from the predatory mite Neoseiulus barkeri shows lethal effect on phytophagous pests. Pesticide Biochemistry and Physiology, 202, 105963.
https://doi.org/10.1016/j.pestbp.2024.105963
[12]Liu, C., Yan, Q., Yi, K., Hu, T., Wang, J., Zhang, Z., Li, H., Luo, Y., Zhang, D., & Meng, E. (2022). A secretory system for extracellular production of spider neurotoxin huwentoxin-I in Escherichia coli. Preparative Biochemistry & Biotechnology, 53(8), 914–922.
https://doi.org/10.1080/10826068.2022.2158473
[13]Mirzadeh, K., Shilling, P. J., Elfageih, R., Cumming, A. J., Cui, H. L., Rennig, M., Nørholm, M. H. H., & Daley, D. O. (2020). Increased production of periplasmic proteins in Escherichia coli by directed evolution of the translation initiation region. Microbial Cell Factories, 19(1).
https://doi.org/10.1186/s12934-020-01339-8
[14]Tetranychus urticae (two-spotted spider mite). (2022b). [Dataset]. In CABI Compendium.
https://doi.org/10.1079/cabicompendium.53366
[15]Fitches EC, Pyati P, King GF, Gatehouse JA. Fusion to snowdrop lectin magnifies the oral activity of insecticidal ω-Hexatoxin-Hv1a peptide by enabling its delivery to the central nervous system. PLoS One. 2012;7(6):e39389. doi: 10.1371/journal.pone.0039389. Epub 2012 Jun 22.
[16]Dawood, M. H., & Snyder, J. C. (2020). The alcohol and epoxy alcohol of zingiberene, produced in trichomes of wild tomato, are more repellent to spider mites than zingiberene. Frontiers in Plant Science, 11.
https://doi.org/10.3389/fpls.2020.00035
[17]Bleeker, P. M., Mirabella, R., Diergaarde, P. J., VanDoorn, A., Tissier, A., Kant, M. R., Prins, M., De Vos, M., Haring, M. A., & Schuurink, R. C. (2012). Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative. Proceedings of the National Academy of Sciences, 109(49), 20124–20129.
https://doi.org/10.1073/pnas.1208756109
[18]Lei, M., Qiu, Z., Guan, L., Xiang, Z., & Zhao, G. (2023). Metabolic Engineering for Efficient Production of Z,Z-Farnesol in E. coli. Microorganisms, 11(6), 1583.
https://doi.org/10.3390/microorganisms11061583
[19]Zhang, Suping, et al. ‘De Novo Biosynthesis of Alpha-Zingiberene from Glucose in Escherichia Coli’. Biochemical Engineering Journal, vol. 176, Dec. 2021, p. 108188.
DOI.org (Crossref),
https://doi.org/10.1016/j.bej.2021.108188
[20]Choi, Won, et al. ‘Heterologous Expression in E. Coli and Functional Characterization of the Tomato CPR Enzymes’. Applied Biological Chemistry, vol. 66, no. 1, Dec. 2023, p. 92.
DOI.org (Crossref),
https://doi.org/10.1186/s13765-023-00850-x
[21]Li, Yikui, et al. ‘De Novo Biosynthesis of P-Coumaric Acid in E. Coli with a Trans-Cinnamic Acid 4-Hydroxylase from the Amaryllidaceae Plant Lycoris Aurea’. Molecules, vol. 23, no. 12, Dec. 2018, p. 3185.
DOI.org(Crossref),
https://doi.org/10.3390/molecules23123185
[22]Chen, Y., Tan, S., Yang, F., Chen, Z., Wu, Z., & Huang, J. (2017). Soluble expression and purification of a functional harpin protein in Escherichia coli. Process Biochemistry, 57, 200–206.
https://doi.org/10.1016/j.procbio.2017.03.010
[23]Cai, Zengying, et al. ‘Efficient Expression and Purification of Soluble HarpinEa Protein by Translation Initiation Region Codon Optimization’. Protein Expression and Purification, vol. 188, Dec. 2021, p. 105970.
DOI.org (Crossref),
https://doi.org/10.1016/j.pep.2021.105970