[1] Thomas Van Leeuwen, John Vontas, Anastasia Tsagkarakou, Wannes Dermauw, Luc Tirry, Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review, 2010 Aug;40(8):563-72, doi: 10.1016/j.ibmb.2010.05.008
[2] Funayama, K. (2015). Outbreaks of the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae) are caused by broad-spectrum insecticide spraying in apple orchards. Applied Entomology and Zoology, 50(2), 169–174.
https://doi.org/10.1007/s13355-014-0318-3Funayama
[3] Li Chen a,b, Michael J. Adangc,d, Guang-Mao Shen a,b (2024). A novel spider venom peptide from the predatory mite Neoseiulus barkeri shows lethal effect on phytophagous pests. Pesticide Biochemistry and Physiology 202 (2024) 105963.
https://doi.org/10.1016/j.pestbp.2024.105963
[4] Sato, M. E., Da Silva, M. Z., Raga, A., & De Souza Filho, M. F. (2005). Abamectin resistance in Tetranychus urticae Koch (Acari: Tetranychidae): selection, cross-resistance and stability of resistance. Neotropical Entomology, 34(6), 991–998.
https://doi.org/10.1590/s1519-566x2005000600016
[5] Demaeght P, Osborne EJ, Odman-Naresh J, Grbić M, Nauen R, Merzendorfer H, Clark RM, Van Leeuwen T. High resolution genetic mapping uncovers chitin synthase-1 as the target-site of the structurally diverse mite growth inhibitors clofentezine, hexythiaz and etoxazole in Tetranychus urticae. Insect Biochem Mol Biol. 2014 Aug;51:52-61. doi: 10.1016/j.ibmb.2014.05.004. Epub 2014 May 22. PMID: 24859419; PMCID: PMC4124130.
[6] Funayama, K. (2015). Outbreaks of the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae) are caused by broad-spectrum insecticide spraying in apple orchards. Applied Entomology and Zoology, 50(2), 169–174.
https://doi.org/10.1007/s13355-014-0318-3Funayama
[7] Nicastro, R. L., Sato, M. E., Arthur, V., & Da Silva, M. Z. (2013). Chlorfenapyr resistance in the spider mite Tetranychus urticae: stability, cross-resistance and monitoring of resistance. Phytoparasitica, 41(5), 503–513.
https://doi.org/10.1007/s12600-013-0309-xNicastro, R. L., Sato, M. E., Arthur, V., & Da Silva, M. Z. (2013). Chlorfenapyr resistance in the spider mite Tetranychus urticae: stability, cross-resistance and monitoring of resistance. Phytoparasitica, 41(5), 503–513.
https://doi.org/10.1007/s12600-013-0309-x
[8] Rani, L., Thapa, K., Kanojia, N., Sharma, N., Singh, S., Grewal, A. S., Srivastav, A. L., & Kaushal, J. (2020). An extensive review on the consequences of chemical pesticides on human health and environment. Journal of Cleaner Production, 283, 124657.
https://doi.org/10.1016/j.jclepro.2020.124657
[9] Chen, Li, et al. ‘A Novel Spider Venom Peptide from the Predatory Mite Neoseiulus Barkeri Shows Lethal Effect on Phytophagous Pests’. Pesticide Biochemistry and Physiology, vol. 202, June 2024, p. 105963.
DOI.org (Crossref),
https://doi.org/10.1016/j.pestbp.2024.105963.
[10] GenBank assembly: GCA_037576195.1,
https://www.ncbi.nlm.nih.gov/datasets/genome/GCA_037576195.1
[11] Sukiran, Nur Afiqah, et al. “Enhancing the Oral and Topical Insecticidal Efficacy of a Commercialized Spider Venom Peptide Biopesticide via Fusion to the Carrier Snowdrop Lectin ( Galanthus Nivalis Agglutinin).” Pest Management Science, vol. 79, no. 1, Jan. 2023, pp. 284–94.
DOI.org (Crossref),
https://doi.org/10.1002/ps.7198.
[12] Fitches, Elaine C., et al. ‘Fusion to Snowdrop Lectin Magnifies the Oral Activity of Insecticidal ω-Hexatoxin-Hv1a Peptide by Enabling Its Delivery to the Central Nervous System’. PLoS ONE, edited by Subba Reddy Palli, vol. 7, no. 6, June 2012, p. e39389.
DOI.org (Crossref),
https://doi.org/10.1371/journal.pone.0039389.
[13] Liu, Changjun, et al. ‘A Secretory System for Extracellular Production of Spider Neurotoxin Huwentoxin-I in Escherichia Coli’. Preparative Biochemistry & Biotechnology, vol. 53, no. 8, Sept. 2023, pp. 914–22.
DOI.org (Crossref),
https://doi.org/10.1080/10826068.2022.2158473.
[14] Rivera-De-Torre, E., Rimbault, C., Jenkins, T. P., Sørensen, C. V., Damsbo, A., Saez, N. J., Duhoo, Y., Hackney, C. M., Ellgaard, L., & Laustsen, A. H. (2022). Strategies for heterologous expression, synthesis, and purification of animal venom toxins. Frontiers in Bioengineering and Biotechnology, 9.
https://doi.org/10.3389/fbioe.2021.811905
[15] Liu, C., Yan, Q., Yi, K., Hu, T., Wang, J., Zhang, Z., Li, H., Luo, Y., Zhang, D., & Meng, E. (2022). A secretory system for extracellular production of spider neurotoxin huwentoxin-I in Escherichia coli. Preparative Biochemistry & Biotechnology, 53(8), 914–922.
https://doi.org/10.1080/10826068.2022.2158473
[16] Shad, M., Nazir, A., Usman, M., Akhtar, M. W., & Sajjad, M. (2024). Investigating the effect of SUMO fusion on solubility and stability of amylase-catalytic domain from Pyrococcus abyssi. International Journal of Biological Macromolecules, 266, 131310.
https://doi.org/10.1016/j.ijbiomac.2024.131310
[17] Dawood, Mohammad H., and John C. Snyder. “The Alcohol and Epoxy Alcohol of Zingiberene, Produced in Trichomes of Wild Tomato, Are More Repellent to Spider Mites Than Zingiberene.” Frontiers in Plant Science, vol. 11, Feb. 2020, p. 35. DOI.org (Crossref),
https://doi.org/10.3389/fpls.2020.00035.
[18] Lei, Mengyang, et al. ‘Metabolic Engineering for Efficient Production of Z,Z-Farnesol in E. Coli’. Microorganisms, vol. 11, no. 6, June 2023, p. 1583. DOI.org (Crossref),
https://doi.org/10.3390/microorganisms11061583.
[19] Cornelius Barry, Haslet, MI(US); Eliana Gonzales-Vigil, Vancouver(CA), (2015), ENZYMES THAT SYNTHESIZE ZINGBERENE, US8,952,221 B2
[20] Zabel, Sebastian, et al. ‘A Single Cytochrome P450 Oxidase from Solanum Habrochaites Sequentially Oxidizes 7‐ Epi‐zingiberene to Derivatives Toxic to Whiteflies and Various Microorganisms’. The Plant Journal, vol. 105, no. 5, Mar. 2021, pp. 1309–25.
DOI.org (Crossref),
https://doi.org/10.1111/tpj.15113.
[21] Zakeri, Bijan, et al. ‘Peptide Tag Forming a Rapid Covalent Bond to a Protein, through Engineering a Bacterial Adhesin’. Proceedings of the National Academy of Sciences, vol. 109, no. 12, Mar. 2012.
DOI.org (Crossref),
https://doi.org/10.1073/pnas.1115485109.
[22] Chen, Yazhou, et al. ‘Soluble Expression and Purification of a Functional Harpin Protein in Escherichia Coli’. Process Biochemistry, vol. 57, June 2017, pp. 200–06.
DOI.org (Crossref),
https://doi.org/10.1016/j.procbio.2017.03.010.
[23] He, Peng, et al. ‘Expression of Modified Snowdrop Lectin (Galanthus Nivalis Agglutinin) Protein Confers Aphids and Plutella Xylostella Resistance in Arabidopsis and Cotton’. Genes, vol. 13, no. 7, June 2022, p. 1169.
DOI.org (Crossref),
https://doi.org/10.3390/genes13071169.
[24] Stacey, D. L., Wyatt, I. J., & Chambers, R. J. (1985). The effect of glasshouse red spider mite damage on the yield of tomatoes. Journal of Horticultural Science, 60(4), 517–523.
https://doi.org/10.1080/14620316.1985.11515659
[25] Tetranychus urticae (two-spotted spider mite). (2022). [Dataset]. In CABI Compendium.
https://doi.org/10.1079/cabicompendium.53366