References
1 Lamb Y. N. (2021). BNT162b2 mRNA COVID-19 Vaccine: First Approval. Drugs, 81(4), 495–501. https://doi.org/10.1007/s40265-021-01480-7
2 Rosa, S. S., Prazeres, D. M. F., Azevedo, A. M., & Marques, M. P. C. (2021). mRNA vaccines manufacturing: Challenges and bottlenecks. Vaccine, 39(16), 2190–2200. https://doi.org/10.1016/j.vaccine.2021.03.038
3 Karikó, K., Ni, H., Capodici, J., Lamphier, M., & Weissman, D. (2004). mRNA is an endogenous ligand for Toll-like receptor 3. The Journal of biological chemistry, 279(13), 12542–12550. https://doi.org/10.1074/jbc.M310175200
4 Karikó, K., Buckstein, M., Ni, H., & Weissman, D. (2005). Suppression of RNA Recognition by Toll-like Receptors: The Impact of Nucleoside Modification and the Evolutionary Origin of RNA. Immunity (Cambridge, Mass.), 23(2), 165–175. https://doi.org/10.1016/j.immuni.2005.06.008
5 Nance, K. D., & Meier, J. L. (2021). Modifications in an Emergency: The Role of N1-Methylpseudouridine in COVID-19 Vaccines. ACS central science, 7(5), 748–756. https://doi.org/10.1021/acscentsci.1c00197
6 McCullum, E. O., Williams, B. A., Zhang, J., & Chaput, J. C. (2010). Random mutagenesis by error-prone PCR. Methods in molecular biology (Clifton, N.J.), 634, 103–109. https://doi.org/10.1007/978-1-60761-652-8_7
7 Joy, J. B., Liang, R. H., McCloskey, R. M., Nguyen, T., & Poon, A. F. (2016). Ancestral Reconstruction. PLoS computational biology, 12(7), e1004763. https://doi.org/10.1371/journal.pcbi.1004763
8 Nijkamp, E., Ruffolo, J. A., Weinstein, E. N., Naik, N., & Madani, A. (2023). ProGen2: Exploring the boundaries of protein language models. Cell Systems, 14(11), 968-978.e3. https://doi.org/10.1016/j.cels.2023.10.002