References
Click Chemistry
- Sørensen, R. S., Okholm, A. H., Schaffert, D., Kodal, A. L. B., Gothelf, K. V., & Kjems, J. (2013).
Enzymatic ligation of large biomolecules to DNA. Acs Nano, 7(9), 8098-8104.
Aptamers, Binding Strength
-
Teng, I. T., Li, X., Yadikar, H. A., Yang, Z., Li, L., Lyu, Y., ... & Tan, W. (2018). Identification and characterization of DNA aptamers specific for phosphorylation epitopes of tau protein. Journal of the American Chemical Society, 140(43), 14314- 14323. Aptamer Sequences
-
Lakhin, A. V., Tarantul, V. Z., & Gening, L. (2013). Aptamers: problems, solutions and prospects. Acta Naturae (англоязычная версия), 5(4 (19)), 34-43.
-
Slavkovic, S., & Johnson, P. E. (2023). Analysis of Aptamer-Small Molecule Binding Interactions Using Isothermal Titration Calorimetry. Methods in molecular biology (Clifton, N.J.), 2570, 105–118.
SELEX and EP-PCR
-
Zaccolo, M., Williams, D. M., Brown, D. M., & Gherardi, E. (1996). An approach to random mutagenesis of DNA using mixtures of triphosphate derivatives of nucleoside analogues. Journal of molecular biology, 255(4), 589–603.
-
Lee, S. O., & Fried, S. D. (2021). An error prone PCR method for small amplicons. Analytical Biochemistry, 628, 114266.
-
Sefah, K., Shangguan, D., Xiong, X., O'donoghue, M. B., & Tan, W. (2010). Development of DNA aptamers using Cell-SELEX. Nature protocols, 5(6), 1169- 1185.
-
Wilson, D. S., & Keefe, A. D. (2000). Random mutagenesis by PCR. Current protocols in molecular biology, 51(1), 8-3.
-
Keefe, A. D., & Cload, S. T. (2008). SELEX with modified nucleotides. Current opinion in chemical biology, 12(4), 448-456.
Alzheimer’s Disease and Tau
-
Jarek DJ, Mizerka H, Nuszkiewicz J, Szewczyk-Golec K. Evaluating p-tau217 and p- tau231 as Biomarkers for Early Diagnosis and Differentiation of Alzheimer's Disease: A Narrative Review. Biomedicines. 2024; 12(4):786.
-
Sui, D., Liu, M., & Kuo, M. H. (2015). In vitro aggregation assays using hyperphosphorylated tau protein. Journal of visualized experiments: JoVE, (95).
-
Szabo, L., Eckert, A., & Grimm, A. (2020). Insights into disease-associated tau impact on mitochondria. International journal of molecular sciences, 21(17), 6344.
-
Karikari, T. K., Ashton, N. J., Brinkmalm, G., Brum, W. S., Benedet, A. L., Montoliu- Gaya, L., ... & Zetterberg, H. (2022). Blood phospho-tau in Alzheimer disease: analysis, interpretation, and clinical utility. Nature Reviews Neurology, 18(7), 400- 418.
-
Silva, M. C., Ferguson, F. M., Cai, Q., Donovan, K. A., Nandi, G., Patnaik, D., ... & Haggarty, S. J. (2019). Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models. elife, 8, e45457.
-
Milà-Alomà, M., Ashton, N. J., Shekari, M., Salvadó, G., Ortiz-Romero, P., Montoliu- Gaya, L., ... & Blennow, K. (2022). Plasma p-tau231 and p-tau217 as state markers of amyloid-β pathology in preclinical Alzheimer’s disease. Nature Medicine, 28(9), 1797-1801.
-
Erten-Lyons, D., Jacobson, A., Kramer, P., Grupe, A., & Kaye, J. (2010). The FAS gene, brain volume, and disease progression in Alzheimer's disease. Alzheimer's & Dementia, 6(2), 118-124.
-
Laxton, A. W., Stone, S., & Lozano, A. M. (2014). The neurosurgical treatment of Alzheimer's disease: a review. Stereotactic and functional neurosurgery, 92(5), 269- 281.
-
White, K. E., & Cummings, J. L. (1996). Schizophrenia and Alzheimer's disease: clinical and pathophysiologic analogies. Comprehensive psychiatry, 37(3), 188-195.
Phosphomimetics
-
Paleologou, K. E., Schmid, A. W., Rospigliosi, C. C., Kim, H. Y., Lamberto, G. R., Fredenburg, R. A., ... & Lashuel, H. A. (2008). Phosphorylation at Ser-129 but not the phosphomimics S129E/D inhibits the fibrillation of α-synuclein. Journal of Biological Chemistry, 283(24), 16895-16905.
-
Xia, Y., Prokop, S., Gorion, K. M. M., Kim, J. D., Sorrentino, Z. A., Bell, B. M., ... & Giasson, B. I. (2020). Tau Ser208 phosphorylation promotes aggregation and reveals neuropathologic diversity in Alzheimer’s disease and other tauopathies. Acta Neuropathologica Communications, 8, 1-17.
-
Wu, L., Gilyazova, N., Ervin, J. F., Wang, S. H. J., & Xu, B. (2022). Site-specific phospho-tau aggregation-based biomarker discovery for AD diagnosis and differentiation. ACS Chemical Neuroscience, 13(23), 3281-3290.
Proteosome, PROTAC for AD like model and Ligases
-
Wang, W., Zhou, Q., Jiang, T., Li, S., Ye, J., Zheng, J., Wang, X., Liu, Y., Deng, M., Ke, D., Wang, Q., Wang, Y., & Wang, J. Z. (2021). A novel small-molecule PROTAC selectively promotes tau clearance to improve cognitive functions in Alzheimer-like models. Theranostics, 11(11), 5279–5295.
-
Kim, J. H., Lee, J., Choi, W. H., Park, S., Park, S. H., Lee, J. H., ... & Lee, M. J. (2021). CHIP-mediated hyperubiquitylation of tau promotes its self-assembly into the insoluble tau filaments. Chemical Science, 12(15), 5599-5610.
-
Li, L., Jiang, Y., Wang, J. Z., Liu, R., & Wang, X. (2022). Tau ubiquitination in Alzheimer's disease. Frontiers in Neurology, 12, 786353
-
Lu, M., Liu, T., Jiao, Q., Ji, J., Tao, M., Liu, Y., ... & Jiang, Z. (2018). Discovery of a Keap1-dependent peptide PROTAC to knockdown Tau by ubiquitination-proteasome degradation pathway. European journal of medicinal chemistry, 146, 251-259.
-
An, S., & Fu, L. (2018). Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine, 36, 553– 562. https://doi.org/10.1016/j.ebiom.2018.09.005
-
Potjewyd, F. M., & Axtman, A. D. (2021). Exploration of aberrant E3 ligases implicated in Alzheimer’s disease and development of chemical tools to modulate their function. Frontiers in Cellular Neuroscience, 15, 768655.
-
Wei, J., Meng, F., Park, K. S., Yim, H., Velez, J., Kumar, P., ... & Jin, J. (2021). Harnessing the E3 ligase KEAP1 for targeted protein degradation. Journal of the American Chemical Society, 143(37), 15073-15083.
-
Bonet-Costa, V., Pomatto, L. C. D., & Davies, K. J. (2016). The proteasome and oxidative stress in Alzheimer's disease. Antioxidants & redox signaling, 25(16), 886- 901.
-
Tsujimura, H., Naganuma, M., Ohoka, N., Inoue, T., Naito, M., Tsuji, G., & Demizu, Y. (2023). Development of DNA Aptamer-Based PROTACs That Degrade the Estrogen Receptor. ACS Medicinal Chemistry Letters, 14(6), 827-832.
Failure of UPR mechanism in AD like models
-
Ajoolabady, A., Lindholm, D., Ren, J., & Pratico, D. (2022). ER stress and UPR in Alzheimer’s disease: mechanisms, pathogenesis, treatments. Cell death & disease, 13(8), 706.
Q.D Related and Diagnostics
-
Yadav, R., Bhattacharyya, B., Saha, S. K., Dutta, P., Roy, P., Rajasekar, G. P., ... & Pandey, A. (2021). Electronic Structure Insights into the Tunable Luminescence of CuAl x Fe1–x S2/ZnS Nanocrystals. The Journal of Physical Chemistry C, 125(4), 2511-2518.
-
Sakudo, A. (2016). Near-infrared spectroscopy for medical applications: Current status and future perspectives. Clinica Chimica Acta, 455, 181-188.
-
Therriault, J., Pascoal, T. A., Lussier, F. Z., Tissot, C., Chamoun, M., Bezgin, G., ... & Rosa-Neto, P. (2022). Biomarker modeling of Alzheimer’s disease using PET-based Braak staging. Nature aging, 2(6), 526-535.
-
Brum, W. S., Cullen, N. C., Therriault, J., Janelidze, S., Rahmouni, N., Stevenson, J., ... & Hansson, O. (2024). A blood-based biomarker workflow for optimal tau-PET referral in memory clinic settings. Nature Communications, 15(1), 2311.
Delivery
-
Salmaso, S., & Caliceti, P. (2013). Stealth properties to improve therapeutic efficacy of drug nanocarriers. Journal of drug delivery, 2013(1), 374252.
Other General References
-
Govindaraju, T. (Ed.). (2022). Alzheimer's Disease. Royal Society of Chemistry.
Compiled by P.K. Harrishnarayanan