Our model serves two main purposes:
Our model can be divided into four interconnected parts, representing the inhalation of muscone, its binding to receptors, intracellular signal transduction and lactate secretion triggered by receptor activation, and the absorption of lactate. These models provide a comprehensive understanding of the project and yield valuable computational results.
Fig 1 General Description of Model
The main focus of our project is the use of muscone as a signaling molecule to activate engineered yeast in the gut for therapeutic purposes. Therefore, it is crucial to provide a quantitative description and computational support for the diffusion of muscone in the body. This model describes the entire process from the inhalation of muscone to its increased concentration in the intestinal tract. We will establish a multi-compartment model that includes the following main processes:
Fig 2 Processes in the Inhalation Model
Corresponding to the above processes, five compartments need to be established for simulation, where \(t\) represents the time variable:
At \(t=0\), the amount of muscone in all compartments is \(0\).
Assuming that the total amount of inhaled muscone is \(Q_{\text{inhale}}\) (\(\text{mg}\)), which is assumed to be \(100\text{mg}\). Only \(0.5\%\) of muscone enters the systemic circulation through adhesion. In this model, since muscone only acts as a signaling molecule to activate yeast to synthesize lactate, we only consider the metabolism and excretion of muscone in the systemic circulation. We only focus on the short-term process of muscone appearing in the intestine from scratch, and the subsequent process of reaching a certain concentration can be ignored.
\[ V_{\text{inhale}}(t) =\frac{Q_{\text{inhale}}}{5}(u(t)-u(t-5)) \]
Explanation: This describes the rate equation for inhaling muscone over five seconds, where the total amount \( Q \) remains constant. The function \( u(t) \) is a step function, which takes the value of \( \frac{Q_{\text{inhale}}}{5} \) from \( t=0s \) to \( t=5s \), and is \( 0 \) otherwise, simulating the scenario of resting human respiration.
\[ \frac{dQ_A(t)}{dt} = V_{\text{inhale}}(t) - \left( k_{\text{exhale}} + k_{\text{perm}} \right) Q_A(t) \]
Explanation: The amount of muscone in the alveoli increases through inhalation and decreases due to exhalation, adhesion to the respiratory mucosa, and permeation into the alveolar capillaries.
Parameters:
\[ \frac{dQ_M(t)}{dt} = 0.0005 \cdot k_{\text{adh}} V_{\text{inhale}}(t) - k_{\text{diffMC}} Q_M(t) \]
Explanation: The increase in muscone on the mucosa comes from adhesion in the alveoli, and the decrease is due to diffusion into the systemic circulation.
Parameters:
\[ \frac{dQ_L(t)}{dt} = k_{\text{perm}} Q_A(t) - k_{\text{diffLC}} Q_L(t) \]
Explanation: The increase in muscone in the alveolar capillaries comes from permeation in the alveoli, and the decrease is due to diffusion into the systemic circulation.
Parameters:
\[ \frac{dQ_C(t)}{dt} = k_{\text{diffMC}} Q_M(t) + k_{\text{diffLC}} Q_L(t) - k_{\text{dist}} Q_C(t) - k_{\text{excrete}} Q_C(t) \]
Explanation: The increase in muscone in the systemic circulation comes from the input of mucosa and alveolar capillaries, and the decrease is due to distribution to the intestinal mesenteric microvascular network and excretion through various routes.
Parameters:
\[ \frac{dQ_I(t)}{dt} = k_{\text{dist}} Q_C(t) - k_{move}Q_I(t) \]
Explanation: The increase in muscone in the intestine comes from the distribution of the systemic circulation, and the decrease is due to metabolism and excretion through intestinal fluid and peristalsis.
\( k_{\text{dist}} \): Same as Compartment 3
\( k_{move} \): The metabolism and excretion of muscone in the intestine, taken as \( 0.02 \
\text{min}^{-1} \)
In summary, we can write a system of ordinary differential equations and import it into MATLAB for simulation:
\[ \begin{align*} Q_{\text{inhale}}(t) & = 100(mg)(Assumption) \\ V_{\text{inhale}}(t) & =\frac{Q_{\text{inhale}}}{5}(u(t)-u(t-5)) \\ \frac{dQ_A(t)}{dt} & = V_{\text{inhale}}(t) -\left( k_{\text{exhale}} + k_{\text{perm}} \right) Q_A(t) \\ \frac{dQ_L(t)}{dt} & = k_{\text{perm}} Q_A(t) - k_{\text{diffLC}} Q_L(t) \\ \frac{dQ_M(t)}{dt} & = 0.0005\cdot k_{\text{adh}} V_{\text{inhale}}(t) - k_{\text{diffMC}} Q_M(t) \\ \frac{dQ_C(t)}{dt} & = k_{\text{diffMC}} Q_M(t) + k_{\text{diffLC}} Q_L(t) - k_{\text{dist}} Q_C(t) - k_{\text{excrete}} Q_C(t) \\ \frac{dQ_I(t)}{dt} & = k_{\text{dist}} Q_C(t)-k_{move}Q_I(t) \\ \end{align*} \]
Fig 3 Stimulation Result of the Muscone Inhalation Model
We simulated the distribution of muscone in the systemic circulation and obtained the concentration change curve of muscone in the systemic circulation. According to the model, after one breath, traces of muscone can spread into the intestine, similarly, the concentration change caused by continuous muscone is simulated by changing the inhalation equation, and the concentration of muscone in the intestine can be obtained in combination with experiment. Because there is no animal experimental support, the data are manually drafted, and the calculation method is more meaningful than the calculation results.
One of the major contributions of our project was the development of a signaling pathway activated by gas molecules acting as switches, so we were interested in the behavior of the muscone when bound to its receptor. Molecular dynamics simulations can help us to visualize the binding process, track the parameters of structural changes, protein folding, and receptor-ligand interactions, and demonstrate their biological significance.
Fig 4 The structural formula of the Muscone
muscone.pdb
) for further simulation and analysis. This step ensures that
the three-dimensional geometric structure of muscone is accurate and suitable for subsequent
molecular docking and dynamics simulations.muscone.pdb
Fig 5 The 3D geometry of Muscone
MOR215-1.pdb
) from the AlphaFold database, whose model quality is
widely recognized, especially in the field of protein structure prediction.MOR215-1.pdb
Fig 6 Protein structure of MOR215-1
open /Users/Shared/MGLTools/1.5.7/bin/adt
MOR215_1.pdbqt
and muscone.pdbqt
adt
, autodock4
,
autogrid4
, vina
config.txt
in the same directory as follows (based
on actual coordinates), runs the docking simulation, and generates the file
muscure.pdbqt
. This file records the possible binding modes of muscone with
the receptor at the defined coordinate position and dimensions
(size_x, size_y, size_z
).
./vina --config config.txt
Obtain muscure.pdbqt
MOR.pdb
and MUS.pdb
.
muscure.pdbqt
and MOR215-1.pdb
Action - find - polar contacts - to any atoms
Label
, export the imageFig 7 Alternative Conformation with Arg-51
Fig 8 Alternative Conformation with Tyr-271
MOR.pdb
and MUS.pdb
.mol2
format, adjust file information, and then use the
software CGenFF to generate its CHARMM36 force field parameter
file MUS_fix.mol2
and parameter file MUS.str
. This step includes
calculating the sorting of the chemical information file (sort_mol2_bonds.pl
) to
ensure file correctness.perl sort_mol2_bonds.pl MUS.mol2 MUS_fix.mol2
MOR_processed.gro
for the receptor using GROMACS's
pdb2gmx
command.
gmx pdb2gmx -f MOR.pdb -o MOR_processed.gro -ter
python cgenff_charmm2gmx_py3_nx2.py MUS MUS_fix.mol2 MUS.str charmm36-jul2022.ff
editconf
and
solvate
commands, merging the topology files of muscone mus.gro
and
receptor MOR_processed.gro
into a single system complex.gro
.
gmx editconf -f mus_ini.pdb -o mus.gro
gmx editconf -f complex.gro -o newbox.gro -bt dodecahedron -d 1.0
topol.top
, it is known that the
net charge is 9; add counterions to neutralize the system.gmx editconf -f complex.gro -o newbox.gro -bt dodecahedron -d 1.0
gmx solvate -cp newbox.gro -cs spc216.gro -p topol.top -o solv.gro
gmx grompp -f ions.mdp -c solv.gro -p topol.top -o ions.tpr
gmx genion -s ions.tpr -o solv_ions.gro -p topol.top -pname NA -nname CL -neutral
[ molecules ]
; Compound #mols
Protein_chain_A 1
MUS 1
SOL 31227
CL 9
gmx grompp -f em.mdp -c solv_ions.gro -p topol.top -o em.tpr
gmx mdrun -v -deffnm em
Steepest Descents converged to Fmax < 1000 in 1182 steps
Potential Energy = -1.5345670e+06
Maximum force = 8.9675085e+02 on atom 4987
Norm of force = 1.3456365e+01
gmx energy -f em.edr -o potential.xvg
#11 0
xmgrace potential.xvg
dit xvg_show -f potential.xvg
Fig 9 Potential Energy Minimization
gmx grompp -f nvt.mdp -c em.gro -r em.gro -p topol.top -n index.ndx -o nvt.tpr
gmx mdrun -deffnm nvt
gmx energy -f nvt.edr -o temperature.xvg
#16 0
dit xvg_show -f temperature.xvg
gmx grompp -f npt.mdp -c nvt.gro -t nvt.cpt -r nvt.gro -p topol.top -n index.ndx -o npt.tpr -maxwarn 1
gmx mdrun -deffnm npt
gmx energy -f npt.edr -o pressure.xvg
#17 0
gmx energy -f npt.edr -o density.xvg
#23 0
dit xvg_show -f temperature.xvg
Fig 10 Curve of the pressure over time
Fig 11 Curve of the density over time
gmx grompp -f md.mdp -c npt.gro -t npt.cpt -p topol.top -n index.ndx -o md_0_10.tpr
gmx mdrun -deffnm md_0_10
Fig 12 Molecular dynamics simulation process
Fig 13 Results of the molecular dynamics simulations
To gain deeper insights into the interactions between muscone and the receptor, visualization tools are used to make the simulation process intuitive, identifying key interaction sites and structural changes.
gmx trjconv
tool, the calculated trajectory data is centered and periodic
boundary conditions are removed, generating the centered trajectory file
md_0_10_center.xtc
and its initial frame start.pdb
.
gmx trjconv -s md_0_10.tpr -f md_0_10.xtc -o md_0_10_center.xtc -center -pbc mol -ur compact
#1 0
gmx trjconv -s md_0_10.tpr -f md_0_10_center.xtc -o start.pdb -dump 0
#0
# Pymol
select water, resn SOL
select ions, resn CL
select protein, not water and not ions
select ligand, resn MUS
deselect
cmd.rotate('x', 45)
cmd.rotate('y', 45)
Fig 14 Visualization of the protein-ligand system
gmx trjconv -s md_0_10.tpr -f md_0_10_center.xtc -o md_0_10_fit.xtc -fit rot+trans
#4 0
gmx trjconv -s md_0_10.tpr -f md_0_10_fit.xtc -o traj.pdb -dt 10
#0
Fig 15 Trajectory Analysis
gmx distance -s md_0_10.tpr -f md_0_10_center.xtc -select 'resname "MUS" and name O plus resid 51 and name NH1' -oall
gmx make_ndx -f em.gro -o index.ndx
> 13 & a O
> 1 & r 51 & a NH1
> 1 & r 51 & a CZ
> 20 | 21 | 22
> q
gmx angle -f md_0_10_center.xtc -n index.ndx -ov angle.xvg
gmx make_ndx -f em.gro -n index.ndx
> 13 & ! a H*
> name MUS_Heavy
> q
gmx rms -s em.tpr -f md_0_10_center.xtc -n index.ndx -tu ns -o rmsd_mus.xvg
xmgrace rmsd_mus.xvg
dit xvg_show -f rmsd_mus.xvg
xmgrace rmsd_mus.xvg
Fig 16 RMSD Analysis
gmx gyrate -s md_0_10.tpr -f md_0_10_fit.xtc -o gyrate.xvg
#1
xmgrace gyrate.xvg
Fig 17 Radius of Gyration Calculation
gmx make_ndx -f em.gro -o index.ndx
> 1 | 13
gmx grompp -f ie.mdp -c npt.gro -t npt.cpt -p topol.top -n index.ndx -o ie.tpr
gmx mdrun -deffnm ie -rerun md_0_10.xtc -nb cpu
gmx energy -f ie.edr -o interaction_energy.xvg
Energy Average Err.Est. RMSD Tot-Drift
-------------------------------------------------------------------------------
Coul-SR:Protein-MUS 0.0439222 0.38 2.88794 1.41131 (kJ/mol)
LJ-SR:Protein-MUS -81.3724 1.6 9.75743 1.99715 (kJ/mol)
#21 | 22
xmgrace interaction_energy.xvg
dit xvg_show -f interaction_energy.xvg
Fig 18 Protein-Ligand Interaction Energy
In our project, we express the muscone receptor (GPCR) on the yeast cell membrane. After a certain concentration of muscone diffuses into the intestine and binds to the receptor, it activates the receptor, which in turn activates the G protein. The G protein dissociates into α and βγ subunits, with the βγ subunit releasing and activating Ste20 and the scaffold protein Ste5. Ste5 can undergo oligomerization and other behaviors, recruiting Ste11, Ste7, and Fus3 near the plasma membrane. The cascade reaction is initiated by Ste20, and the signal is transmitted along the Ste11-Ste7-Fus3 cascade. Fus3 activates the transcription factor pFUS1, and the downstream gene is LahA, which expresses lactate dehydrogenase LDH, catalyzing the conversion of pyruvate to lactate. This model simulates the changes in the concentrations and phosphorylation states of molecules in the signaling transduction pathway by writing out chemical reactions and converting them into ordinary differential equations, in order to obtain the quantitative relationship between muscone activation and lactate secretion. The model includes the following main processes:
\[ \begin{align*} \text{Pheromone} + \text{Ste2} & \rightarrow \text{PheromoneSte2} \\ \text{PheromoneSte2} & \rightarrow \text{Pheromone} + \text{Ste2} \\ \text{PheromoneSte2} + \text{Gpa1Ste4Ste18} & \rightarrow \text{PheromoneSte2Gpa1Ste4Ste18} \\ \text{PheromoneSte2Gpa1Ste4Ste18} & \rightarrow \text{PheromoneSte2Gpa1} + \text{Ste4Ste18} \\ \text{PheromoneSte2Gpa1} & \rightarrow \text{PheromoneSte2} + \text{Gpa1} \\ \text{Gpa1} + \text{Ste4Ste18} & \rightarrow \text{Gpa1Ste4Ste18} \end{align*} \]
After Ste2 binds with muscone, it interacts with the G protein, causing the exchange of GDP bound to the G protein with GTP in the cytoplasm, releasing Ste4 and Ste18. After Gpa1 catalyzes the conversion of GTP to GDP, it can return to the cytoplasm and rebind, forming a G protein trimer. Since the original signaling pathway is the yeast pheromone signaling pathway, with the ligand being the pheromone, this section uses Pheromone to represent the molecules that activate the receptor.
Ordinary Differential Equations\[ \begin{align*} \frac{d{P}}{dt} & = k_{off_{PS}}{PS} - k_{on_{PS}}{P}*{S} \\ \frac{d{S}}{dt} & = k_{off_{PS}}{PS} - k_{on_{PS}}{P}*{S} \\ \frac{d{PS}}{dt} & = k_{on_{PS}}{P}*{S} + k_{off_{SG}} {PSG} \\ & \quad - k_{off_{PS}}{PS} - k_{on_{SG}}{PS} * {GSS} \\ \frac{d{GSS}}{dt} & = k_{on_{GS}}{SS} * {G} - k_{on_{SG}}{PS} * {GSS} \\ \frac{d{PSGSS}}{dt} & = k_{on_{SG}}{PS} * {GSS} - k_{on_{GS}}{PSGSS} \\ \frac{d{PSG}}{dt} & = k_{on_{GS}}{PSGSS} - k_{off_{SG}} {PSG} \\ \frac{d{SS}}{dt} & = k_{on_{GS}}{PSGSS} - k_{on_{GS}}{SS} * {G} \\ \frac{d{G}}{dt} & = k_{off_{SG}} {PSG} - k_{on_{GS}}{SS} * {G} \\ \end{align*} \]
Table 1: Variables of Receptor Activation Model
Variable | Represents Molecule | Concentration (\(\mu M\)) |
---|---|---|
\(P\) | Pheromone | - |
\(S\) | Ste2 | \(0.287\) |
\(PS\) | PheromoneSte2 | - |
\(GSS\) | Gpa1Ste4Ste18 | - |
\(PSGSS\) | PheromoneSte2Gpa1Ste4Ste18 | - |
\(PSG\) | PheromoneSte2Gpa1 | - |
\(SS\) | Ste4Ste18 | \(2\times 10^{-4}\) |
\(G\) | Gpa1 | \(2\times 10^{-4}\) |
Table 2: Parameters of Receptor Activation Model
Parameter | Meaning | Value | Unit |
---|---|---|---|
\(k_{on_{PS}}\) | Binding rate of Pheromone to Ste2 | \(0.185\) | \({\mu M}^{-1} \cdot s^{-1}\) |
\(k_{off_{PS}}\) | Dissociation rate of PheromoneSte2 | \(1 \times 10^{-3}\) | \(s^{-1}\) |
\(k_{on_{SG}}\) | Binding rate of PheromoneSte2 to Gpa1Ste4Ste18 | - | \({\mu M}^{-1} \cdot s^{-1}\) |
\(k_{off_{SG}}\) | Dissociation rate of PheromoneSte2Gpa1 | - | \(s^{-1}\) |
\(k_{on_{GS}}\) | Binding rate of Gpa1 to Ste4Ste18 | - | \({\mu M}^{-1} \cdot s^{-1}\) |
\(k_{off_{GS}}\) | Dissociation rate of PheromoneGpa1Ste4Ste18 | - | \(s^{-1}\) |
There are \(0.3{\mu M}\) of Pheromone and \(1{\mu M}\) of inactive G proteins. Known variables are entered, other variables are set to zero, and unknown parameters are defined. After starting the simulation, reactions occur according to the equations listed.
Fig 19 Receptor Activation
Explanation: The binding of Ste4Ste18 with Ste5 and the oligomerization of Ste5 is a process that is not completely independent. Many equations can be derived through combinations, but here we only consider the dimerization process, and each reaction is reversible. Since Ste5 actually binds to Ste4, we abbreviate Ste5 as S5 and Ste4 as S4 in the equations.
Ordinary Differential Equations:Table 3: Variables of Scaffold Formation Model
Variable | Represents Molecule |
---|---|
\(S5\) | Ste5 |
\(S55\) | Ste5Ste5 |
\(S45\) | Ste4Ste18Ste5 |
\(S455\) | Ste4Ste18Ste5Ste5 |
\(S4554\) | Ste4Ste18Ste5Ste5Ste4Ste18 |
\(S4\) | Ste4Ste18 |
Table 4: Parameters of Scaffold Formation Model
Parameter | Meaning |
---|---|
\(k_{on_{S5:S5}}\) | Binding rate of Ste5 and Ste5 |
\(k_{off_{S5:S5}}\) | Dissociation rate of Ste5:Ste5 |
\(k_{on_{S4:S5}}\) | Binding rate of Ste4Ste18 and Ste5 |
\(k_{off_{S4:S5}}\) | Dissociation rate of Ste4Ste18:Ste5 |
\(k_{on_{S4S5:S5}}\) | Binding rate of Ste4Ste18Ste5 and Ste5 |
\(k_{off_{S4S5:S5}}\) | Dissociation rate of Ste4Ste18Ste5:Ste5 |
\(k_{on_{S4:S5S5}}\) | Binding rate of Ste4Ste18 and Ste5Ste5 |
\(k_{off_{S4:S5S5}}\) | Dissociation rate of Ste4Ste18:Ste5Ste5 |
\(k_{on_{S4:S5S5S4}}\) | Binding rate of Ste4Ste18Ste5Ste5 and Ste4Ste18 |
\(k_{off_{S4:S5S5S4}}\) | Dissociation rate of Ste4Ste18Ste5Ste5:Ste4Ste18 |
\(k_{on_{S4S5:S5S4}}\) | Binding rate of Ste4Ste18Ste5 and Ste4Ste18Ste5 |
\(k_{off_{S4S5:S5S4}}\) | Dissociation rate of Ste4Ste18Ste5:Ste5Ste4Ste18 |
Assume that before signal transduction starts, there are only free Ste5 and just released Ste4Ste18 in the cell, with concentrations both equal to 1, and parameters are assumed. After starting the simulation, reactions occur according to the listed equations, and after a period of time, the concentrations reach equilibrium.
Fig 20 Scaffold Formation
Reactions:
\[ \begin{align*} Ste5_{off_{Ste11}} + Ste11_{off} & \rightarrow Ste5Ste11 \\ Ste5_{off_{Ste7}} + Ste7_{off} & \rightarrow Ste5Ste7 \\ Ste5_{off_{Fus3}} + Fus3_{off} & \rightarrow Ste5Fus3 \\ \end{align*} \]
\[ \begin{align*} Ste11 & \xrightarrow {Ste20} Ste11_{pS} \\ Ste11_{pS} & \xrightarrow {Ste20} Ste11_{pSpS} \\ Ste11_{pSpS} & \xrightarrow {Ste20} Ste11_{pSpSpT} \\ \end{align*} \]
\[ \begin{align*} Ste7 & \xrightarrow {Ste11_{pS},Ste11_{pSpS},Ste11_{pSpSpT}} Ste7_{pS} \\ Ste7_{pS} & \xrightarrow {Ste11_{pS},Ste11_{pSpS},Ste11_{pSpSpT}} Ste7_{pSpT}\\ \end{align*} \]
\[ \begin{align*} Fus3 & \xrightarrow {Ste7_{pS},Ste7_{pSpT}} Fus3_{pY} \\ Fus3 & \xrightarrow {Ste7_{pS},Ste7_{pSpT}} Fus3_{pT} \\ Fus3_{pY} & \xrightarrow {Ste7_{pS},Ste7_{pSpT}} Fus3_{pYpT} \\ Fus3_{pT} & \xrightarrow {Ste7_{pS},Ste7_{pSpT}} Fus3_{pYpT} \\ \end{align*} \]
Only the Ste5 bound to the scaffold has significance in recruiting Ste11, Ste7, and Fus3, and the binding to these three proteins is independent. Therefore, the Ste5 on the scaffold can be treated as three copies to calculate its binding with Ste11, Ste7, and Fus3 separately. The three proteins are activated through cascading phosphorylation initiated by Ste20, and the conditions for the reactions to occur are that the kinases are activated and bound to the scaffold. Each protein has different forms of phosphorylation modifications, which may have different catalytic reaction rates; thus, they need to be listed separately.
The forms of multiple reactions are similar; here, only a portion is selected for demonstration.
Taking Ste11 as an example to illustrate the binding of the kinase with Ste5:
\[ \begin{align*} \frac{dSte5_{off_{Ste11}}}{dt} & = k_{off_{Ste5Ste11}}Ste5Ste11 - k_{on_{Ste5Ste11}}Ste5_{off_{Ste11}} * Ste11_{off} \\ \frac{dSte11_{off}}{dt} & = k_{off_{Ste5Ste11}}Ste5Ste11 - k_{on_{Ste5Ste11}}Ste5_{off_{Ste11}} * Ste11_{off} \\ \frac{dSte5Ste11}{dt} & = - k_{off_{Ste5Ste11}}Ste5Ste11 + k_{on_{Ste5Ste11}}Ste5_{off_{Ste11}} * Ste11_{off} \\ \end{align*} \]
Table 5: Variables of Ste11 Binding Model
Variable | Represents Molecule |
---|---|
\(Ste5_{off_{Ste11}}\) | Unbound kinase Ste5 |
\(Ste11_{off}\) | Unbound scaffold Ste11 |
\(Ste5Ste11\) | Bound Ste5 and Ste11 |
Table 6: Parameters of Ste11 Binding Model
Parameter | Meaning | Units |
---|---|---|
\(k_{off_{Ste5Ste11}}\) | Dissociation rate of Ste5Ste11 | \({s}^{-1}\) |
\(k_{on_{Ste5Ste11}}\) | Association rate of Ste5 and Ste11 | \({\mu M}^{-1}·s^{-1}\) |
Using Ste11 catalyzing the phosphorylation of Ste7 as an example to illustrate the phosphorylation process:
\[ \frac{dSte7_{pS}}{dt} = kcat_{Ste11pS{Ste7_{pS}}}Ste11_{pS}*\frac{Ste5Ste11}{Ste11_{total}}*\frac{Ste5Ste7}{Ste7_{total}}*\frac{Ste7_{pS}}{Ste7_{total}}+\ldots \]
Table 7: Variables of Ste7 Phosphorylation Model
Variable | Represents Molecule |
---|---|
\(Ste7_{pS}\) | Phosphorylated Ste7 at S359 |
\(Ste11_{pS}\) | Phosphorylated Ste11 at S302 |
\(Ste5Ste11\) | Ste11 bound to Ste5 |
\(Ste5Ste7\) | Ste7 bound to Ste5 |
\(Ste7_{total}\) | Total amount of Ste7 |
\(kcat_{Ste11pS{Ste7_{pS}}}\): Represents the catalytic efficiency in this case.
The concentrations of the three kinases are known, assuming their initial state has not undergone phosphorylation. Some enzyme activity parameters are known, and other parameters are roughly estimated to the same order of magnitude.
Fig 21 Combination of kinases and scaffold
Fig 22 Ste11 phosphorylation
Fig 23 Ste7 phosphorylation
Fig 24 Fus3 phosphorylation
Our project alleviates IBD symptoms by secreting lactate in the intestine to weaken autoimmunity, but it may face two aspects of doubt: first, why can't lactate or lactate bacteria probiotics be taken directly; second, will the considerable secretion of lactate cause acidosis in the human body? We hope to model our project to describe how it has a better sustained release effect compared to direct lactate consumption, more precise control compared to probiotic intake, and to avoid adaptation of the immune system and gut microbiota. Additionally, we need to develop a computational method to achieve precise control over lactate secretion to regulate treatment time and prevent acidosis.
According to Fick's law :
\[ \frac{dQd}{dt} = -D \frac{dC}{dx} \]
Because the distance between diffusion is very small, the concentration difference between the two sides of the system replaces the concentration gradient, so this formula can be simplified to:
\[ \frac{dQd}{dt} = K\times Qd \]
In the case of direct lactate intake, the content of lactate in the intestine can be described by the following equation:
\[ Q_d = (Q_{d_0} + a)e^{-(k_1 + k_2)t} \]
Explanation: The absorption rate is proportional to the concentration of lactic acid, and the concentration of lactate declines in an exponential form.
Parameters:
The remaining lactate content in the intestinal environment has a recursive relationship over time:
\[ Q_{d_i} = \left(Q_{d_{i-1}} + \frac{a}{n}\right)e^{-(k_1 + k_2)(t - (i-1)\frac{t_0}{n})} \]
We can obtain the expression:
\[ Q_{d_i} = \frac{a}{n} \sum_{m=1}^{i-1} e^{-(k_1 + k_2)\left(mt - \left(j \frac{(m+2)(m+1)}{2} \frac{t_0}{n}\right)\right)} \]
Fig 25 Lactate Absorption
By simulating the absorption process of lactate, we can conclude that in the case of direct administration, the concentration of lactate decreases exponentially over time, while in the case of induced secretion, the concentration of lactate slowly increases over time and reaches equilibrium after a certain period.
[1] Borghardt JM, Weber B, Staab A, Kloft C. Pharmacometric Models for Characterizing the Pharmacokinetics of Orally Inhaled Drugs. AAPS J. 2015 Jul;17(4):853-70. doi: 10.1208/s12248-015-9760-6. Epub 2015 Apr 7. PMID: 25845315; PMCID: PMC4477002.
[2] Thomson TM, Benjamin KR, Bush A, Love T, Pincus D, Resnekov O, Yu RC, Gordon A, Colman-Lerner A, Endy D, Brent R. Scaffold number in yeast signaling system sets tradeoff between system output and dynamic range. Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20265-70. doi: 10.1073/pnas.1004042108. Epub 2011 Nov 23. PMID: 22114196; PMCID: PMC3250143.
[3] Sheng Li. Global quantitative study on the non-equilibrium cell fate decision-making of yeast under pheromone perturbation[D].Jilin University,2023.DOI:10.27162/d.cnki.gjlin.2023.007553.
[4] Scott BM, Gutiérrez-Vázquez C, Sanmarco LM, da Silva Pereira JA, Li Z, Plasencia A, Hewson P, Cox LM, O'Brien M, Chen SK, Moraes-Vieira PM, Chang BSW, Peisajovich SG, Quintana FJ. Self-tunable engineered yeast probiotics for the treatment of inflammatory bowel disease. Nat Med. 2021 Jul;27(7):1212-1222. doi: 10.1038/s41591-021-01390-x. Epub 2021 Jun 28. PMID: 34183837.
[5] Tuncbag N, Braunstein A, Pagnani A, Huang SS, Chayes J, Borgs C, Zecchina R, Fraenkel E. Simultaneous reconstruction of multiple signaling pathways via the prize-collecting steiner forest problem. J Comput Biol. 2013 Feb;20(2):124-36. doi: 10.1089/cmb.2012.0092. PMID: 23383998; PMCID: PMC3576906.
[6] Kanehisa, M. (n.d.). Pathway: Sce04011. KEGG. Retrieved October 1, 2024, from https://www.kegg.jp/pathway/sce04011