$$
\frac{dn}{dt} = r*n * (1 - \frac{n}{K})
$$
$$
\frac{dH}{dt} = a * n - b * H
$$
$$
\frac{d𝑞}{𝑑𝑡} = [α_q+ α_q^∗ ∗ 𝐹(H)] ∗ 𝑛 − γ_q ∗ q
$$
$$
F(x) = \frac{x^m}{x_c^m + x^m}
$$
$$
f(q) = F(q) * γ * n
$$
$$
Y = Y_0 + Y_{max} - ln\{e ^ {Y_{0}} + [e ^ {Y_{max}} - e ^ {Y_0}]e ^ {-μ_{max}^{B(t)}}\}
$$
$$
B(t) = t + \frac{1}{a}ln\frac{1 + e^{-α(t-λ)}}{1+e^{aλ}}
$$
$$
\frac{dn1}{dt} = r*n1 * (1 - \frac{n1 + α*n2}{K})
$$
$$
\frac{dn1}{dt} = r*n1 * (1 - \frac{n1 + α*n2}{K}) - m_i*n1
$$
$$
m_i = m_i0 + di * ni ^δ , δ ∈(0, ∞)∀i
$$
$$
\frac{d𝑞}{𝑑𝑡} = \{α_q+ α_q^∗ ∗ 𝐹(H)* \frac{1}{2}[u(H) + u(H-x_c)]\} ∗ 𝑛 − γ_q ∗ q
$$
$$
f(q , p) = F(q - c * p) * γ * n
$$
$$
g(t) = ∫_0^T\{[1+0.2 * sgn(f1'(t))]f1(t) + [1+0.2 * sgn(f2'(t))]\}dt
$$