123
123 123 123 123 123
123 123 123 123 123 123 123 123 123
123 123 123 123 123 123 123
123 123 123 123 123 123 123
123 123 123
123 123


123
$$ \frac{dn}{dt} = r*n * (1 - \frac{n}{K}) $$
123
$$ \frac{dH}{dt} = a * n - b * H $$
123
$$ \frac{d𝑞}{𝑑𝑡} = [α_q+ α_q^∗ ∗ 𝐹(H)] ∗ 𝑛 − γ_q ∗ q $$
123
$$ F(x) = \frac{x^m}{x_c^m + x^m} $$
123
$$ f(q) = F(q) * γ * n $$
123
$$ Y = Y_0 + Y_{max} - ln\{e ^ {Y_{0}} + [e ^ {Y_{max}} - e ^ {Y_0}]e ^ {-μ_{max}^{B(t)}}\} $$
 
$$ B(t) = t + \frac{1}{a}ln\frac{1 + e^{-α(t-λ)}}{1+e^{aλ}} $$
123 123
$$ \frac{dn1}{dt} = r*n1 * (1 - \frac{n1 + α*n2}{K}) $$
 
123
$$ \frac{dn1}{dt} = r*n1 * (1 - \frac{n1 + α*n2}{K}) - m_i*n1 $$
 
$$ m_i = m_i0 + di * ni ^δ , δ ∈(0, ∞)∀i $$
 
123
 
$$ \frac{d𝑞}{𝑑𝑡} = \{α_q+ α_q^∗ ∗ 𝐹(H)* \frac{1}{2}[u(H) + u(H-x_c)]\} ∗ 𝑛 − γ_q ∗ q $$
 
123
 
$$ f(q , p) = F(q - c * p) * γ * n $$
 
123
$$ g(t) = ∫_0^T\{[1+0.2 * sgn(f1'(t))]f1(t) + [1+0.2 * sgn(f2'(t))]\}dt $$
 
123 123 123 123 123 123 123 123 123 123
123