{ "cells": [ { "cell_type": "markdown", "id": "f6690114-16eb-4c27-bc3f-9ff2e7204c2a", "metadata": {}, "source": [ "# EasyCOBRA" ] }, { "cell_type": "markdown", "id": "b6cd2b86-8a70-49a3-b81c-f780fad811d1", "metadata": {}, "source": [ "EasyCOBRA is a Python package we developed that provides numerous methods for analyzing and modifying metabolic networks, while being more user-friendly. It consists of two components: `EasyCobraModifier` and `EasyCobraAnalyzer`." ] }, { "cell_type": "markdown", "id": "a75b53ef-9cde-498d-9d85-b426dcfd5e23", "metadata": {}, "source": [ "## EasyCobraModifier" ] }, { "cell_type": "code", "execution_count": 1, "id": "60272c63-53cb-49ac-a021-bba9c97ac0bf", "metadata": {}, "outputs": [], "source": [ "import sys\n", "sys.path.append(r'C:\\Users\\86150\\i_learn_python')\n", "\n", "from EasyCOBRA import EasyCobraModifier" ] }, { "cell_type": "markdown", "id": "e5a1fe8b-c556-4786-9317-1411cd5a9401", "metadata": {}, "source": [ "-\n", "First, load your own model" ] }, { "cell_type": "code", "execution_count": 2, "id": "c2fdc62e-1961-4449-bdae-152ab1496252", "metadata": { "scrolled": true }, "outputs": [], "source": [ "Modifier = EasyCobraModifier(\"./DGF298.json\")" ] }, { "cell_type": "markdown", "id": "8fd93685-09c3-43fe-bad8-4ba3a9be3fc8", "metadata": {}, "source": [ "### Search" ] }, { "cell_type": "markdown", "id": "e7f594f9-5cb3-4ddc-afaa-0b9f89019115", "metadata": {}, "source": [ "-\n", "Find reactions corresponding to a gene name using `get_reactions_by_gene_name`. The result is a list of tuples, each containing the `reaction_id` and `reaction_name`." ] }, { "cell_type": "code", "execution_count": 3, "id": "55b5e2c9-2f55-4e44-bb19-441a90cb893a", "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[('NADH16pp', 'NADH dehydrogenase (ubiquinone-8 & 3 protons) (periplasm)'), ('NADH17pp', 'NADH dehydrogenase (menaquinone-8 & 3 protons) (periplasm)'), ('NADH18pp', 'NADH dehydrogenase (demethylmenaquinone-8 & 3 protons) (periplasm)')]\n" ] } ], "source": [ "reactions_info = Modifier.get_reactions_by_gene_name(\"nuoF\")\n", "print(reactions_info)" ] }, { "cell_type": "markdown", "id": "10ce0e73-95ae-477a-b958-b09ad7112697", "metadata": {}, "source": [ "-\n", "Find reactions corresponding to a gene name using `get_reactions_by_gene_id`. The result is a list of tuples, each containing the `reaction_id` and `reaction_name`." ] }, { "cell_type": "code", "execution_count": 4, "id": "01f02e6e-86a7-4cb6-8451-bb7c7b5f6407", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[('PGI', 'Glucose-6-phosphate isomerase')]\n" ] } ], "source": [ "reactions_info = Modifier.get_reactions_by_gene_id(\"b4025\")\n", "print(reactions_info)" ] }, { "cell_type": "markdown", "id": "9c58bd98-81f8-482b-b0f0-e636ba8e9496", "metadata": {}, "source": [ "-\n", "Find reactions involving metabolites using `get_reactions_by_metabolite`." ] }, { "cell_type": "code", "execution_count": 5, "id": "7ada8aa2-87d4-4e71-9d3b-aaef224e7b47", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['ACONTb', 'ICDHyr', 'ICL']\n" ] } ], "source": [ "reactions_ids = Modifier.get_reactions_by_metabolite(\"icit_c\")\n", "print(reactions_ids)" ] }, { "cell_type": "markdown", "id": "bac8ea14-4ad5-45c9-9395-6c59c7c6bdd2", "metadata": {}, "source": [ "### Check" ] }, { "cell_type": "markdown", "id": "84aacb76-afaa-4888-80a3-30b7e21d1087", "metadata": {}, "source": [ "-\n", "You can use `check_metabolites_exist`, `check_reactions_exist`, and `check_genes_exist` to check if a metabolite, reaction, or gene exists in the model." ] }, { "cell_type": "code", "execution_count": 6, "id": "fc00556f-66db-4729-b543-00e48f502faa", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[True]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Modifier.check_metabolites_exist([\"icit_c\"])" ] }, { "cell_type": "code", "execution_count": 7, "id": "95ac2e08-e8b2-4749-ac61-463961d6852b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[True, False]" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Modifier.check_reactions_exist([\"PGI\",\"abc\"])" ] }, { "cell_type": "code", "execution_count": 8, "id": "ee9aeb1c-3642-4d2d-b740-dc58188c1c2b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[True, False]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Modifier.check_genes_exist([\"nuoF\",\"abc\"])" ] }, { "cell_type": "markdown", "id": "dd1fd889-1c6a-4a73-8cf0-89de7fc8babd", "metadata": {}, "source": [ "-\n", "You can use `check_balance` to check if the specified reaction ID corresponds to a balanced reaction, meaning the total number of atoms before and after the reaction is consistent." ] }, { "cell_type": "code", "execution_count": 9, "id": "91467ee1-4485-47ae-b60a-1e9fb54b9329", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Reactants:\n", "g6p_c: C6H11O9P\n", "\n", "Products:\n", "f6p_c: C6H11O9P\n", "\n", "Total atoms in reactants:\n", "C: -6.0\n", "H: -11.0\n", "O: -9.0\n", "P: -1.0\n", "\n", "Total atoms in products:\n", "C: -6.0\n", "H: -11.0\n", "O: -9.0\n", "P: -1.0\n", "\n", "The reaction is balanced.\n" ] } ], "source": [ "Modifier.check_balance(\"PGI\")" ] }, { "cell_type": "markdown", "id": "6155a49a-3add-4d40-adfa-65de1c62e0f4", "metadata": {}, "source": [ "### Modify the metabolic network" ] }, { "cell_type": "markdown", "id": "c1e8f0c5-ea8c-4e12-ac50-a528cbc79e2b", "metadata": {}, "source": [ "\n", "Define reactions and the associated metabolites, and add the corresponding reactions to the metabolic network model. Note that you can specify the type of metabolites, which includes 'sink', 'source', 'exchange', 'demand', 'production', 'transport'; the specific meanings can be found in the official documentation of COBRApy." ] }, { "cell_type": "code", "execution_count": 10, "id": "7ac1bc26-3424-4176-a43e-6e4749ea4033", "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "[True]" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "reactions = [\n", " {\n", " \"id\": \"my_NADPH_Dehydrogenase\",\n", " \"name\": \"NADPH Dependent Dehydrogenase\",\n", " \"stoichiometry\": {\n", " \"aacoa_c\": -1,\n", " \"nadph_c\": -1,\n", " \"hbcoa_c\": 1,\n", " \"nadp_c\": 1\n", " },\n", " }\n", "]\n", "\n", "metabolites = [\n", " {\n", " \"id\": \"aacoa_c\",\n", " \"formula\": \"C23H32O17\",\n", " \"name\": \"Acetyl-CoA\",\n", " \"compartment\": \"c\",\n", " \"type\":\"\"\n", " },\n", " {\n", " \"id\": \"nadph_c\",\n", " \"formula\": \"C21H29N7O17P3\",\n", " \"name\": \"NADPH\",\n", " \"compartment\": \"c\",\n", " \"type\":\"\"\n", " },\n", " {\n", " \"id\": \"hbcoa_c\",\n", " \"formula\": \"C22H30O16\",\n", " \"name\": \"HB-CoA\", # Change to appropriate name if necessary\n", " \"compartment\": \"c\",\n", " \"type\": \"\"\n", " },\n", " # Add more metabolites as needed\n", "]\n", "\n", "\n", "# Add pathway and save model\n", "Modifier.add_pathway(reactions, metabolites)\n", "Modifier.check_reactions_exist([\"my_NADPH_Dehydrogenase\"])" ] }, { "cell_type": "markdown", "id": "e0512eb1-b994-448d-a442-59769e2aa616", "metadata": {}, "source": [ "-\n", "To delete a specified reaction, you can use `remove_reaction`." ] }, { "cell_type": "code", "execution_count": 11, "id": "46828024-5ddf-42ed-b179-160ce46f9819", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Reaction 'my_NADPH_Dehydrogenase' removed successfully.\n" ] }, { "data": { "text/plain": [ "[False]" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Modifier.remove_reaction(\"my_NADPH_Dehydrogenase\")\n", "Modifier.check_reactions_exist([\"my_NADPH_Dehydrogenase\"])" ] }, { "cell_type": "markdown", "id": "088a16f5-41b5-45fb-a641-96769dfc6952", "metadata": {}, "source": [ "-\n", "After modifying the model, you can use `save_model` to save it." ] }, { "cell_type": "code", "execution_count": 12, "id": "c9a9fd2e-4928-4b0d-baa5-7b6d1584202a", "metadata": {}, "outputs": [], "source": [ "Modifier.save_model(\"./mymodel.json\")" ] }, { "cell_type": "markdown", "id": "71dd8ce8-cfef-49e5-b4c9-ad54eb1ec362", "metadata": {}, "source": [ "## EasyCobraAnalyzer" ] }, { "cell_type": "markdown", "id": "66dcfa1e-8e01-4a5f-a889-f442c3893ba0", "metadata": {}, "source": [ "### Single-objective, Multi-objective Optimization and Visualization" ] }, { "cell_type": "markdown", "id": "f02b5f13-b3da-4e60-a532-940aebca5b71", "metadata": {}, "source": [ "\n", "EasyCobraAnalyzer provides a range of methods for performing flux balance analysis on metabolic networks, including both single-objective and multi-objective optimization.\n", "\n", "\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": 13, "id": "7c4212b0-f544-4c15-9c07-6c557bd9205e", "metadata": {}, "outputs": [], "source": [ "from EasyCOBRA import EasyCobraAnalyzer" ] }, { "cell_type": "markdown", "id": "ce6a87a7-ba3a-49ca-a11e-364bc713cfb4", "metadata": {}, "source": [ "-\n", "The `perform_optimization` method in EasyCobraAnalyzer is primarily used to run flux balance analysis (FBA). The `target_reactions` parameter is a list containing the target reactions. If multiple target reactions are specified, their weights must be provided to enable multi-objective optimization. The `variable_reactions` parameter specifies the conditions for running FBA. For example, `variable_reactions=['EX_glc__D_e']` and `variable_ranges=[(0, 21, 1)]` indicate that the maximum values of `target_reactions` will be calculated under conditions where glucose ranges from 0 to 21 (with a step size of 1), and the result will be returned as an array. If two `variable_reactions` are provided, a two-dimensional array will be returned." ] }, { "cell_type": "code", "execution_count": 14, "id": "33fdabda-1d5c-4783-9f02-e35a98bf99f5", "metadata": { "scrolled": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\86150\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\cobra\\util\\solver.py:554: UserWarning: Solver status is 'infeasible'.\n", " warn(f\"Solver status is '{status}'.\", UserWarning)\n" ] } ], "source": [ "analyzer = EasyCobraAnalyzer(\"./DGF298_core-PHB-8_16.json\")\n", "result = analyzer.perform_optimization(\n", " target_reactions=['PHB_Synthesis'],\n", " variable_reactions=['EX_glc__D_e'],\n", " variable_ranges=[(0, 21, 1)]\n", ")\n", "glucose_range = result['variable_ranges'][0]\n", "phb_fluxes = result['fluxes']['PHB_Synthesis']\n", "\n" ] }, { "cell_type": "markdown", "id": "865ddef1-9dff-4653-9380-806e145db6c1", "metadata": {}, "source": [ "-\n", "After obtaining the array returned by `perform_optimization`, you can run the `plot_fluxes` function for visualization. If a one-dimensional array is returned, `plot_fluxes` will generate a line plot. If a two-dimensional array is returned, it will create a heatmap. Additionally, if there are multiple `target_reactions`, multiple subplots will be generated.\n", "\n", "\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": 15, "id": "f5c3f168-8ca2-4bf6-b2d1-2c304678b22f", "metadata": { "scrolled": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAJOCAYAAABBWYj1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAABiCUlEQVR4nO3dd3QUZeP28WvTQyo1EEjovQRIBBEVEBQQBRQFEULAQhexIOLzAGJD7I+KIBaQIlgBFQURQaxAEnrvLRB6KtmUnfcPf+Q1ksAmJJndzfdzzp7jzs7MXsO47MXe9+xaDMMwBAAAgKtyMzsAAACAs6A4AQAA2IniBAAAYCeKEwAAgJ0oTgAAAHaiOAEAANiJ4gQAAGAnihMAAICdKE4AAAB2ojgBTqhWrVoaPHiw2TGuaPny5WrZsqV8fHxksVh04cIFsyO5pI4dO6pZs2al+pyHDh2SxWLRnDlzSvV5AUdAcQIcyJw5c2SxWPK9Pf3002bHs9vZs2fVt29f+fr6avr06Zo3b578/PzyXfffx+zj46MGDRpo9OjRSkxMzF1vzZo1slgs+vLLL/Pdz+DBg+Xv759nWceOHfPs28vLS7Vr19bQoUN19OjRQh9XamqqJk+erGbNmsnPz08VK1ZUy5Yt9eijjyohIaHQ+7NXQkKCnn32WW3atKnEngOAfTzMDgDgcs8995xq166dZ1lpf6pwLTZs2KCUlBQ9//zz6tKli13bXDrmjIwM/fbbb5oxY4a+//57bdu2TeXKlStylho1amjq1KmSpMzMTO3YsUMzZ87UihUrtHPnTrv3nZWVpZtvvlm7du1STEyMHnnkEaWmpmr79u369NNPdddddyk0NLTIOa8kISFBU6ZMUa1atdSyZcsSeY7CqFmzpi5evChPT0+zowCljuIEOKDu3bsrKirK7BhFdurUKUlScHCw3dv885gfeughVaxYUW+88YaWLl2q/v37FzlLUFCQBg4cmGdZ7dq1NXr0aP3++++69dZb7drPkiVLtHHjRi1YsED3339/nscyMjKUmZlZ5IzO5tIng0BZxFAd4AKeffZZWSyWy5ZfGgY7dOiQJOnnn3+Wm5ubJk2alGe9Tz/9VBaLRTNmzLjqc33xxReKjIyUr6+vKlWqpIEDB+r48eO5j3fs2FExMTGSpOuuu04Wi6VI87FuueUWSdLBgwcLve3VVK1aVZLk4WH/vx33798vSWrfvv1lj/n4+CgwMFCSNHv2bFksFm3cuPGy9V566SW5u7vn/nldmp+0Y8cOderUSeXKlVP16tX1yiuv5G6zZs0aXXfddZKkIUOG5A47/nt+0ZX2cYnVatXkyZNVr149eXt7KywsTE899ZSsVmue9VauXKkbb7xRwcHB8vf3V8OGDfXMM8/kPp7fHKeTJ09qyJAhqlGjhry9vVWtWjX16tUr9/89wFVQnAAHlJSUpDNnzuS5FYdbbrlFI0eO1NSpUxUfHy9JOnHihB555BF16dJFw4cPv+L2c+bMUd++feXu7q6pU6fq4Ycf1tdff60bb7wxd/L3f/7zHw0dOlTS38Nv8+bN07Bhwwqd9VJRqVixYp7lKSkpl/3ZnDlz5rI3/0tycnJy1zlx4oR+/vnn3PKQXwkqSM2aNSVJc+fOlWEYBa53zz33yNfXVwsWLLjssQULFqhjx46qXr167rLz58+rW7duioiI0Ouvv65GjRpp/Pjx+uGHHyRJjRs31nPPPSdJGjp0qObNm6d58+bp5ptvtnsfkmSz2dSzZ0+99tpruvPOO/XOO++od+/eevPNN9WvX7/c9bZv36477rhDVqtVzz33nF5//XX17NlTv//++xX/fPr06aPFixdryJAheu+99zRmzBilpKToyJEjV9wOcDoGAIcxe/ZsQ1K+t3+qWbOmERMTk3t/8uTJl63zz/0dPHgwd1laWppRr149o2nTpkZGRobRo0cPIzAw0Dh8+PAVs2VmZhpVqlQxmjVrZly8eDF3+XfffWdIMiZNmnTZ827YsMHuY/7pp5+M06dPG0ePHjUWLVpkVKxY0fD19TWOHTtmGIZhrF69usA/m0s3Pz+/PPvu0KFDvus1btzYOHDgwFWz/VN6errRsGFDQ5JRs2ZNY/DgwcZHH31kJCYmXrZu//79jdDQUCMnJyd3WXx8vCHJmD179mX55s6dm7vMarUaVatWNfr06ZO7bMOGDZdtW9h9zJs3z3BzczN+/fXXPNvPnDnTkGT8/vvvhmEYxptvvmlIMk6fPl3gn8XBgwfz5Dl//rwhyXj11VcL3AZwFXziBDig6dOna+XKlXluxaVcuXKaM2eOdu7cqZtvvlnLli3Tm2++qfDw8CtuFxsbq1OnTmnkyJF55rf06NFDjRo10rJly64pV5cuXVS5cmWFhYXpvvvuk7+/vxYvXpzn0xlJmjRp0mV/NitXrtRtt92W735r1aqVu84PP/ygt956S0lJSerevbtOnz5tdz5fX1+tW7dO48aNk/T3p28PPvigqlWrpkceeSTPJ16DBg1SQkKCVq9enbtswYIF8vX1VZ8+ffLs19/fP88cLC8vL7Vp00YHDhywO5s9+/jiiy/UuHFjNWrUKM8ndZeGRC9lvTQvbenSpbLZbHY9v6+vr7y8vLRmzRqdP3/e7tyAM2JyOOCA2rRpU6KTw9u3b68RI0Zo+vTp6tq1qx544IGrbnP48GFJUsOGDS97rFGjRvrtt9+uKdP06dPVoEEDeXh4KCQkRA0bNpSb2+X/tmvevHm+V+rNnz8/3/36+fnlWb9bt2668cYbFRUVpZdfflmvv/663RmDgoL0yiuv6JVXXtHhw4e1atUqvfbaa3r33XcVFBSkF154QZJ06623qlq1alqwYIE6d+4sm82mhQsXqlevXgoICMizzxo1alw2P618+fLasmWL3bns2cfevXu1c+dOVa5cOd99XJrQ369fP3344Yd66KGH9PTTT6tz5866++67dc899+R7PiTJ29tb06ZN0xNPPKGQkBBdf/31uuOOOzRo0KDc+WSAq+ATJ8AF5DcxXPp7fk9+rFar1qxZI+nvuUTp6eklFc1ubdq0UZcuXdSxY0c1bty4wDfp4hAZGamgoCCtXbu2yPuoWbOmHnjgAf3+++8KDg7OM6fJ3d1d999/v7766itlZGRo9erVSkhIuOzqvkvr5se4wjyqouzDZrOpefPm+X5at3LlSo0cOVLS358erV27Vj/99JOio6O1ZcsW9evXT7feemuB/z9J0tixY7Vnzx5NnTpVPj4+mjhxoho3bpzvJHnAmVGcABdQvnx5Sbrs27kvfUr0b5MnT9bOnTv12muv6eDBg3Z9uealydG7d+++7LHdu3fnPu4scnJylJqaes37KV++vOrWrasTJ07kWT5o0CAlJyfr22+/1YIFC1S5cmV17dq1SM9RUDEujLp16+rcuXPq3LmzunTpctntn58kurm5qXPnznrjjTe0Y8cOvfjii/r555/zDD0W9BxPPPGEfvzxR23btk2ZmZmF+kQPcAYUJ8AF1K1bV5LyfIKSlpamTz755LJ1161bp9dee01jx47VE088oXHjxundd9/VL7/8csXniIqKUpUqVTRz5sw883l++OEH7dy5Uz169Cimoyl5q1evVmpqqiIiIuzeZvPmzfle3Xj48GHt2LHjsiHMFi1aqEWLFvrwww/11Vdf6b777ivU1x/806VvXb+Wn63p27evjh8/rg8++OCyxy5evKi0tDRJ0rlz5y57/NKXbhZ05WJ6eroyMjLyLKtbt64CAgIK3AZwVsxxAlzAbbfdpvDwcD344IMaN26c3N3d9fHHH6ty5cp5LgfPyMhQTEyM6tevrxdffFGSNGXKFH377bcaMmSItm7dWuBPo3h6emratGkaMmSIOnTooP79+ysxMVH/+9//VKtWLT322GOlcqyFlZSUlDv/KTs7W7t379aMGTPk6+tbqJ+xWblypSZPnqyePXvq+uuvl7+/vw4cOKCPP/5YVqtVzz777GXbDBo0SE8++aQk5TtMZ6+6desqODhYM2fOVEBAgPz8/NS2bdvLvl3+SqKjo/X5559r+PDhWr16tdq3b6+cnBzt2rVLn3/+uVasWKGoqCg999xzWrt2rXr06KGaNWvq1KlTeu+991SjRg3deOON+e57z5496ty5s/r27asmTZrIw8NDixcvVmJiou67774iHzfgiChOgAvw9PTU4sWLNXLkSE2cOFFVq1bV2LFjVb58eQ0ZMiR3vWeeeUb79u3TH3/8kXtlnJeXlz755BNdf/31GjdunN57770Cn2fw4MEqV66cXn75ZY0fP15+fn666667NG3atEJ9S3hpOnbsmKKjoyX9PeRVvnx5dejQQZMnTy7Uz5f06dNHKSkp+vHHH/Xzzz/r3LlzKl++vNq0aaMnnnhCnTp1umybAQMGaPz48apbt67atGlT5GPw9PTUJ598ogkTJmj48OHKzs7W7NmzC1Wc3NzctGTJEr355puaO3euFi9erHLlyqlOnTp69NFH1aBBA0lSz549dejQIX388cc6c+aMKlWqpA4dOmjKlCkKCgrKd99hYWHq37+/Vq1apXnz5snDw0ONGjXS559/ftlVhICzsxiFmYEIALDbmTNnVK1aNU2aNEkTJ040Ow6AYsAcJwAoIXPmzFFOTk7uJ14AnB9DdQDKtJycnKt+Eaa/v7/8/f3t3ufPP/+cezVa7969VatWrWtMCcBRMFQHoEw7dOjQVecKTZ48Od/J3wXp2LGj/vjjD7Vv317z58+/7NvPATgvihOAMi0jI+Oq33pep04d1alTp5QSAXBkFCcAAAA7MTkcAADATi4/OdxmsykhIUEBAQHF8rMFAADAtRiGoZSUFIWGhl71dzJdvjglJCQoLCzM7BgAAMDBHT16VDVq1LjiOi5fnAICAiT9/YcRGBhochoAAOBokpOTFRYWltsZrsTli9Ol4bnAwECKEwAAKJA9U3qYHA4AAGAnihMAAICdKE4AAAB2ojgBAADYieIEAABgJ4oTAACAnShOAAAAdqI4AQAA2IniBAAAYCeKEwAAgJ0oTgAAAHaiOAEAANiJ4gQAAGAnihMAAICdKE4AAAB2ojgBAADYydTitHbtWt15550KDQ2VxWLRkiVLLltn586d6tmzp4KCguTn56frrrtOR44cKf2wAACgzDO1OKWlpSkiIkLTp0/P9/H9+/frxhtvVKNGjbRmzRpt2bJFEydOlI+PTyknBQAAkCyGYRhmh5Aki8WixYsXq3fv3rnL7rvvPnl6emrevHlF3m9ycrKCgoKUlJSkwMDAYkgKAABKW5o1W37eHiWy78J0BYed42Sz2bRs2TI1aNBAXbt2VZUqVdS2bdt8h/P+yWq1Kjk5Oc8NAAA4J5vN0Bsr96jrW2t1NtVqdhzHLU6nTp1SamqqXn75ZXXr1k0//vij7rrrLt1999365ZdfCtxu6tSpCgoKyr2FhYWVYmoAAFBcUjKyNHRenN5etVfHzl/U99tOmh3JcYfqEhISVL16dfXv31+ffvpp7no9e/aUn5+fFi5cmO9+rFarrNb/30iTk5MVFhbGUB0AAE5k/+lUDZ0bq/2n0+Tl4aaX7mqueyJrlMhzFWaormQGC4tBpUqV5OHhoSZNmuRZ3rhxY/32228Fbuft7S1vb++SjgcAAErIqp2JGrtok1Ks2aoa6KP3oyMVERZsdixJDlycvLy8dN1112n37t15lu/Zs0c1a9Y0KRUAACgpNpuh6av36Y2f9sgwpOtqldd7AyJVOcBxPhAxtTilpqZq3759ufcPHjyoTZs2qUKFCgoPD9e4cePUr18/3XzzzerUqZOWL1+ub7/9VmvWrDEvNAAAKHap1mw9+flmLd/+9zym6OtrauIdTeTl4VjTsU2d47RmzRp16tTpsuUxMTGaM2eOJOnjjz/W1KlTdezYMTVs2FBTpkxRr1697H4Ovo4AAADHduhMmh6eG6u9p1Ll5e6m53o11X1twkvt+QvTFRxmcnhJoTgBAOC41uw+pTELNyo5I1tVArw1MzpSrcPLl2oGl5gcDgAAXJdhGJrxy369umK3DENqHR6smQMjVSXQsX8dhOIEAABKVXpmtsZ9uUXLtpyQJPVvE6ZnezaVt4e7ycmujuIEAABKzZGz6Ro6L1a7TqbIw82iKb2aakBb57lanuIEAABKxW97z2j0wnhdSM9SJX9vzRjYWtfVqmB2rEKhOAEAgBJlGIY+/PWgpv6wUzZDiqgRpJnRkaoW5Gt2tEKjOAEAgBJzMTNHT3+9RUs3JUiS7omsoRd6N5OPp+PPZ8oPxQkAAJSIY+fTNWxenLYnJMvdzaJJdzTRoHY1ZbFYzI5WZBQnAABQ7P7Yf0ajP92oc2mZquDnpfcGtNb1dSqaHeuaUZwAAECxMQxDc/44pBeW7VSOzVCz6oF6PzpK1YOdbz5TfihOAACgWGRk5eg/i7fpq/hjkqS7WlXX1LubO+18pvxQnAAAwDVLuHBRw+fHacuxJLm7WTSheyM9eGNtp57PlB+KEwAAuCbrD57TyAVxOpOaqeBynpp+f2u1r1fJ7FglguIEAACKxDAMzf/rsKZ8u0PZNkONqwVqVnSkwiqUMztaiaE4AQCAQrNm52jSku36LPaoJOmOFtX0yj0tVM7LtauFax8dAAAodonJGRo+P04bj1yQm0Ua362Rht5cx+XmM+WH4gQAAOwWd/ichs+P1+kUqwJ9PPTO/a3VoUFls2OVGooTAACwy8L1RzRp6TZl5RhqGBKgWYMiVbOin9mxShXFCQAAXFFmtk3Pfrtdn647Iknq3qyqXrs3Qn7eZa9GlL0jBgAAdjuVkqGR8+MVe/i8LBbpydsaamTHumViPlN+KE4AACBfm45e0LB5sUpMtirAx0Nv39dKnRpVMTuWqShOAADgMp/HHtV/F29TZo5N9ar464NBUapdqWzNZ8oPxQkAAOTKyrHp+e92aO6fhyVJtzUJ0et9IxTg42lyMsdAcQIAAJKkM6lWjVwQr/UHz0mSHuvSQI/cUk9ubmVzPlN+KE4AAEBbjyVp2LxYJSRlyN/bQ2/2a6lbm4SYHcvhUJwAACjjvoo7pgmLtyoz26Y6lfw0a1CU6lXxNzuWQ6I4AQBQRmXn2PTS97v08e8HJUmdG1XRm/e1VCDzmQpEcQIAoAw6l5ap0Z/G64/9ZyVJY26pp7FdGjCf6SooTgAAlDHbjidp2Lw4Hb9wUX5e7nq9b4S6NatmdiynQHECAKAMWbrpuMZ/tUUZWTbVqlhOswZFqUFIgNmxnAbFCQCAMiA7x6ZXVuzWrLUHJEkdGlTW2/e1UlA55jMVBsUJAAAXdyE9U48s3Khf956RJI3oWFdP3tZQ7sxnKjSKEwAALmzXyWQNnRunI+fS5evprtfujVCPFsxnKiqKEwAALur7rSf0xOebdTErR2EVfDUrOkqNqwWaHcupUZwAAHAxOTZDr/+4W++t2S9JurFeJb3Tv5XK+3mZnMz5UZwAAHAhSelZevSzjVqz+7QkaejNdfRU14bycHczOZlroDgBAOAi9iSmaOjcWB06my4fTzdN69NCvVpWNzuWS6E4AQDgApZvO6knPt+ktMwcVQ/21fvRkWpWPcjsWC6H4gQAgBOz2Qy9tWqv3l61V5LUrk5FTR/QWhWYz1QiKE4AADip5IwsPf7ZJv2085Qk6YH2tfXM7Y2Yz1SCKE4AADih/adT9fDcWB04nSYvDzdNvau5+kTWMDuWy6M4AQDgZH7akajHPtukFGu2qgX56P3oSLWoEWx2rDKB4gQAgJOw2Qy9u3qf3li5R5LUplYFTR/QWpUDvE1OVnZQnAAAcAKp1mw98fkmrdieKEka1K6m/tujibw8mM9UmihOAAA4uINn0jR0bqz2nkqVl7ubnu/dVP2uCzc7VplEcQIAwIGt3n1KYxZuVEpGtkICvTVjYKRah5c3O1aZRXECAMABGYahGb/s16srdsswpNbhwZo5MFJVAn3MjlammTowunbtWt15550KDQ2VxWLRkiVLClx3+PDhslgseuutt0otHwAAZkjPzNboTzfqleV/l6b+bcK1cOj1lCYHYGpxSktLU0REhKZPn37F9RYvXqy//vpLoaGhpZQMAABzHDmbrrvf+0PLtp6Qp7tFL97VTFPvbi5vD3ezo0EmD9V1795d3bt3v+I6x48f1yOPPKIVK1aoR48epZQMAIDS9+ve03pk4UZdSM9SJX9vzRzYWlG1KpgdC//g0HOcbDaboqOjNW7cODVt2tTsOAAAlAjDMPTBrwf08g+7ZDOkiLBgvT8wUlWDGJpzNA5dnKZNmyYPDw+NGTPG7m2sVqusVmvu/eTk5JKIBgBAsbiYmaPxX23RN5sTJEn3RtbQ872byceToTlH5LDFKS4uTv/73/8UHx8vi8Vi93ZTp07VlClTSjAZAADF49j5dA2dG6cdJ5Ll4WbRpDubKPr6moV630PpctivG/3111916tQphYeHy8PDQx4eHjp8+LCeeOIJ1apVq8DtJkyYoKSkpNzb0aNHSy80AAB2+mP/GfV893ftOJGsin5emv9QWw1qV4vS5OAc9hOn6OhodenSJc+yrl27Kjo6WkOGDClwO29vb3l785s9AADHZBiGPv79kF76fqdybIaaVw/SzOhIVQ/2NTsa7GBqcUpNTdW+ffty7x88eFCbNm1ShQoVFB4erooVK+ZZ39PTU1WrVlXDhg1LOyoAANcsIytHzyzeqq/jj0uS7mpVXVPvbs58JidianGKjY1Vp06dcu8//vjjkqSYmBjNmTPHpFQAABS/hAsXNWxenLYeT5K7m0XP3N5YD7RnaM7ZmFqcOnbsKMMw7F7/0KFDJRcGAIASsu7AWY1cEK+zaZkqX85T0+9vrRvqVTI7ForAYec4AQDg7AzD0Ly/Duu5b3co22aocbVAzYqOVFiFcmZHQxFRnAAAKAEZWTmatHSbPo89Jkm6MyJUr/RpIV8v5jM5M4oTAADF7GRShobNj9PmoxfkZpGe7t5ID99Uh/lMLoDiBABAMYo9dE7D58frTKpVQb6eeqd/K93coLLZsVBMKE4AABSTBesO69lvtisrx1DDkADNGhSpmhX9zI6FYkRxAgDgGmVm2zT5m+1auP6IJOn25lX16j0R8vPmbdbVcEYBALgGp5IzNGJBvOIOn5fFIj15W0ON7FiX+UwuiuIEAEARxR85rxHz45SYbFWAj4fe7t9KnRpWMTsWShDFCQCAIvh8w1H9d8k2ZebYVK+Kvz4YFKXalZjP5OooTgAAFEJWjk3Pf7dDc/88LEm6rUmI3ujXUv7MZyoTOMsAANjpdIpVoxbEa/2hc5Kkx7o00CO31JObG/OZygqKEwAAdthy7IKGzYvTiaQM+Xt76M1+LXVrkxCzY6GUUZwAALiKr+KOacLircrMtqlOJT/NGhSlelX8zY4FE1CcAAAoQFaOTS99v1Ozfz8kSercqIrevK+lAn08zQ0G01CcAADIx9lUq0Z/ulF/HjgrSRpzSz2N7dKA+UxlHMUJAIB/2XY8ScPmxen4hYvy83LX630j1K1ZNbNjwQFQnAAA+Ielm45r/FdblJFlU62K5TRrUJQahASYHQsOguIEAICk7Bybpi3fpQ9+PShJ6tiwsv7Xr5WCyjGfCf8fxQkAUOadT8vUIws36rd9ZyRJIzvW1RO3NZQ785nwLxQnAECZtvNEsobOi9XRcxfl6+mu1+6NUI8WzGdC/ihOAIAy67stCRr3xRZdzMpRWAVfzYqOUuNqgWbHggOjOAEAypwcm6FXV+zWzF/2S5Juql9J7/RvpeByXiYng6OjOAEAypSk9Cw9smij1u45LUkaenMdPdW1oTzc3UxOBmdAcQIAlBl7ElP08NxYHT6bLh9PN03r00K9WlY3OxacCMUJAFAmLN92Qo9/vlnpmTmqHuyrWYMi1TQ0yOxYcDIUJwCAS7PZDL350x698/M+SVK7OhU1fUBrVfBjPhMKj+IEAHBZyRlZemzRJq3adUqS9ED72nrm9kbMZ0KRUZwAAC5p36lUDZ0bqwNn0uTl4aaX726uu1vXMDsWnBzFCQDgclbuSNRjn21SqjVb1YJ89H50pFrUCDY7FlwAxQkA4DJsNkNv/7xXb/20V5LUpnYFvTegtSr5e5ucDK6C4gQAcAkpGVl6/PPNWrkjUZIU066m/ntHE3kynwnFiOIEAHB6B06naui8OO07lSovdze9cFcz9Y0KMzsWXBDFCQDg1FbvOqUxizYqJSNbIYHemjkwUq3Cy5sdCy6K4gQAcEqGYei9Nfv12o+7ZRhSZM3ymjGwtaoE+JgdDS6M4gQAcDpp1mw9+cVm/bDtpCRpQNtwTb6zqbw8mM+EkkVxAgA4lcNn0zR0bpx2J6bI092iKT2b6f624WbHQhlBcQIAOI1f9pzWmIUblXQxS5UDvDVzYGtF1qxgdiyUIRQnAIDDMwxDs9Ye0LTlu2QzpJZhwXo/OlIhgcxnQumiOAEAHFp6ZrbGf7VV325OkCT1jaqh53s3k7eHu8nJUBZRnAAADuvouXQNnRennSeS5eFm0eQ7m2jg9TVlsVjMjoYyiuIEAHBIv+87o1GfxutCepYq+XvpvQGRalOb+UwwF8UJAOBQDMPQR78d1Evf75TNkFrUCNLMgZEKDfY1OxpAcQIAOI6MrBxN+HqrFm88Lkm6u3V1vXRXc/l4Mp8JjoHiBABwCMcvXNSwebHadjxZ7m4W/ef2xhrSvhbzmeBQKE4AANP9deCsRi2I19m0TFXw89K797fSDXUrmR0LuAzFCQBgGsMwNPfPw3r+ux3KthlqGhqo96MjVaN8ObOjAfky9Ud91q5dqzvvvFOhoaGyWCxasmRJ7mNZWVkaP368mjdvLj8/P4WGhmrQoEFKSEgwLzAAoNhkZOVo3JdbNPmb7cq2GerVMlRfDr+B0gSHZmpxSktLU0REhKZPn37ZY+np6YqPj9fEiRMVHx+vr7/+Wrt371bPnj1NSAoAKE4nki6q3/t/6su4Y3KzSM/c3khv9WspXy8mgcOxWQzDMMwOIUkWi0WLFy9W7969C1xnw4YNatOmjQ4fPqzwcPt+0DE5OVlBQUFKSkpSYGBgMaUFABTVhkPnNGJ+vM6kWhVczlPv9G+lm+pXNjsWyrDCdAWnmuOUlJQki8Wi4OBgs6MAAIpg/l+H9ez/Dc01qhqgWdFRCq/I0Bych9MUp4yMDI0fP179+/e/Yhu0Wq2yWq2595OTk0sjHgDgCqzZOXr2m+1auP6oJKlH82p69d4WKuflNG9DgCST5zjZKysrS3379pVhGJoxY8YV1506daqCgoJyb2FhYaWUEgCQn8TkDPWf9ZcWrj8qi0Ua362R3r2/FaUJTsnhi9Ol0nT48GGtXLnyqmOPEyZMUFJSUu7t6NGjpZQUAPBv8UfO6853flP8kQsK9PHQ7MHXaUTHunypJZyWQ9f9S6Vp7969Wr16tSpWrHjVbby9veXt7V0K6QAAV7Jo/RFNWrpdmTk2NQjx16zoKNWq5Gd2LOCamFqcUlNTtW/fvtz7Bw8e1KZNm1ShQgVVq1ZN99xzj+Lj4/Xdd98pJydHJ0+elCRVqFBBXl5eZsUGAFxBZrZNz3+3Q/P+OixJ6to0RK/3bSl/b4f+tzpgF1O/jmDNmjXq1KnTZctjYmL07LPPqnbt2vlut3r1anXs2NGu5+DrCACg9JxOsWrkgjhtOHReFov0eJcGGtWpntzcGJqD43KaryPo2LGjrtTbHOQrpgAAdth89IKGzYvTyeQMBXh76K37Wqpz4xCzYwHFis9NAQDX7Mu4Y3pm8VZlZttUp7KfPhgUpbqV/c2OBRQ7ihMAoMiycmx6cdlOzfnjkCSpS+MqeqNfSwX6eJobDCghFCcAQJGcTbVq1Kfx+uvAOUnSo53r69HO9ZnPBJdGcQIAFNq240kaNi9Oxy9clJ+Xu97o11Jdm1Y1OxZQ4ihOAIBCWbLxuMZ/tUXWbJtqV/LTrOhI1Q8JMDsWUCooTgAAu2Tn2DRt+S598OtBSVLHhpX1v/taKciX+UwoOyhOAICrOp+WqdEL4/X7vrOSpFGd6urxWxvKnflMKGMoTgCAK9qRkKyh82J17PxFlfNy12v3Ruj25tXMjgWYguIEACjQd1sSNO6LLbqYlaPwCuU0a1CkGlXlVxhQdlGcAACXybEZenXFbs38Zb8k6ab6lfRO/1YKLsfvhKJsozgBAPJISs/SI4s2au2e05KkYR3q6KmujZjPBIjiBAD4hz2JKXp4bqwOn02Xj6ebXrknQj0jQs2OBTgMihMAQJK0fNsJPf75ZqVn5qh6sK9mDYpU09Ags2MBDoXiBABlnM1m6M2f9uidn/dJktrVqajpA1qrgh/zmYB/ozgBQBmWnJGlxxZt0qpdpyRJD95YWxO6N5KHu5vJyQDHRHECgDJq36kUDZ0bpwNn0uTt4aaX+zTXXa1qmB0LcGgUJwAog1buSNRjn21SqjVboUE+ej86Ss1rMJ8JuBqKEwCUITabobd/3qu3ftorSWpTu4LeG9Balfy9TU4GOAeKEwCUESkZWXr8881auSNRkhTTrqb+e0cTeTKfCbAbxQkAyoADp1M1dF6c9p1KlZe7m164q5n6RoWZHQtwOhQnAHBxq3ed0phFG5WSka2qgT6aGR2plmHBZscCnBLFCQBclGEYem/Nfr32424ZhhRVs7zeG9haVQJ8zI4GOC2KEwC4oDRrtp78YrN+2HZSkjSgbbgm39lUXh7MZwKuBcUJAFzM4bNpGjo3TrsTU+TpbtFzvZqpf5tws2MBLoHiBAAu5Jc9pzVm4UYlXcxS5QBvzRzYWpE1K5gdC3AZFCcAcAGGYWjW2gOatnyXbIbUMixY70dHKiSQ+UxAcaI4AYCTS8/M1vivturbzQmSpH5RYXqud1N5e7ibnAxwPRQnAHBiR8+la+i8OO08kSwPN4sm92yqgW3DZbFYzI4GuCSKEwA4qd/3ndHoT+N1Pj1Llfy99N6ASLWpzXwmoCRRnADAyRiGoY9+O6iXvt8pmyG1qBGkmQMjFRrsa3Y0wOVRnADAiWRk5WjC11u1eONxSVKf1jX04l3N5OPJfCagNFCcAMBJHL9wUcPnxWnr8SS5u1k0sUdjxdxQi/lMQCmiOAGAE/jrwFmNWhCvs2mZquDnpen3t1a7uhXNjgWUORQnAHBghmFo7p+H9fx3O5RtM9Q0NFDvR0eqRvlyZkcDyiSKEwA4qIysHP13yTZ9GXdMktS7Zaim3t1Cvl7MZwLMQnECAAd0Iunv+UybjyXJzSI9c3tjPXhjbeYzASajOAGAg9lw6JxGzI/XmVSrgst56t3+rXVj/UpmxwIgihMAOAzDMLRg3RE9+812ZdsMNaoaoA8GRSmsAvOZAEdBcQIAB2DNztGz32zXwvVHJUk9WlTTq/e0UDkv/poGHAmvSAAwWWJyhkbMj1P8kQuyWKSnujbS8A51mM8EOCCKEwCYKO7weY2YH6dTKVYF+njonftbq0ODymbHAlAAihMAmGTR+iOauHSbsnIMNQjx16zoKNWq5Gd2LABXQHECgFKWmW3Tc99t1/y/jkiSujWtqtf6Rsjfm7+SAUfHqxQAStGplAyNWhCvDYfOy2KRnri1gUZ1qsd8JsBJUJwAoJRsOnpBw+fF6WRyhgK8PfS//i11S6MQs2MBKASKEwCUgi9ij+o/S7YpM9umupX9NGtQlOpW9jc7FoBCojgBQAnKyrHpxWU7NeePQ5KkLo1D9Ga/CAX4eJobDECRuJn55GvXrtWdd96p0NBQWSwWLVmyJM/jhmFo0qRJqlatmnx9fdWlSxft3bvXnLAAUEhnUq0a+OG63NI0tkt9zYqOpDQBTszU4pSWlqaIiAhNnz4938dfeeUVvf3225o5c6bWrVsnPz8/de3aVRkZGaWcFAAKZ+uxJPV85zetO3hO/t4emhUdqbFdGsjNjUnggDMzdaiue/fu6t69e76PGYaht956S//973/Vq1cvSdLcuXMVEhKiJUuW6L777ivNqABgt8Ubj+npr7bKmm1T7Up++mBQpOpVCTA7FoBiYOonTldy8OBBnTx5Ul26dMldFhQUpLZt2+rPP/8scDur1ark5OQ8NwAoDdk5Nj3/3Q499tlmWbNtuqVRFS0Z1Z7SBLgQhy1OJ0+elCSFhOS9VDckJCT3sfxMnTpVQUFBubewsLASzQkAknQuLVODPl6vj347KEka3amePhwUpSBf5jMBrsRhi1NRTZgwQUlJSbm3o0ePmh0JgIvbkZCsnu/+pj/2n1U5L3fNGNBaT3ZtyHwmwAU57NcRVK1aVZKUmJioatWq5S5PTExUy5YtC9zO29tb3t7eJR0PACRJ32xO0FNfblZGlk01K5bTrOgoNazK0Bzgqhz2E6fatWuratWqWrVqVe6y5ORkrVu3Tu3atTMxGQBIOTZDU3/YqTELNyojy6abG1TWN6NupDQBLs7UT5xSU1O1b9++3PsHDx7Upk2bVKFCBYWHh2vs2LF64YUXVL9+fdWuXVsTJ05UaGioevfubV5oAGXehfRMPbJwo37de0aSNLxDXY3r2lDuDM0BLs/U4hQbG6tOnTrl3n/88cclSTExMZozZ46eeuoppaWlaejQobpw4YJuvPFGLV++XD4+PmZFBlDG7TqZrKFz43TkXLp8Pd31yj0tdGdEqNmxAJQSi2EYhtkhSlJycrKCgoKUlJSkwMBAs+MAcGLfbz2hJ7/YrPTMHNUo76tZ0VFqEsrfK4CzK0xXcNjJ4QDgKHJsht5YuVvTV++XJLWvV1Hv9m+t8n5eJicDUNooTgBwBUkXszR20Uat3n1akvTwTbU1vlsjebg77LU1AEoQxQkACrA3MUVD58Xp4Jk0eXu4aVqfFurdqrrZsQCYiOIEAPlYsf2kHv9sk9Iyc1Q92FfvR0eqWfUgs2MBMBnFCQD+wWYz9L9Ve/W/VXslSdfXqaDp97dWRX++WBcAxQkAcqVkZOmxzzbrp52JkqQh7Wvpmdsby5P5TAD+D8UJACTtP52qoXNjtf90mrw83PTSXc11T2QNs2MBcDAUJwBl3qqdiRq7aJNSrNmqFuSjmQMjFREWbHYsAA6I4gSgzLLZDE1fvU9v/LRHhiFdV6u83hsQqcoBzGcCkD+KE4AyKdWarSc/36zl209KkqKvr6mJdzSRlwfzmQAUjOIEoMw5dCZND8+N1d5TqfJyd9PzvZuq33XhZscC4AQoTgDKlDW7T2nMwo1KzshWlQBvzYyOVOvw8mbHAuAkKE4AygTDMDTjl/16dcVuGYbUOjxYMwdGqkqgj9nRADgRihMAl5eema1xX27Rsi0nJEn924Tp2Z5N5e3hbnIyAM6G4gTApR05m66h82K162SKPN0terZnUw1oW9PsWACcFMUJgMv6be8ZjV4YrwvpWark762ZA1srqlYFs2MBcGIUJwAuxzAMffjrQU39YadshhQRFqz3B0aqahDzmQBcG4oTAJdyMTNHT3+9RUs3JUiS7o2soed7N5OPJ/OZAFw7ihMAl3HsfLqGzYvT9oRkebhZNOnOJoq+vqYsFovZ0QC4CIoTAJfwx/4zGv3pRp1Ly1RFPy9NH9Ba19epaHYsAC6G4gTAqRmGoTl/HNILy3Yqx2aoefUgzYyOVPVgX7OjAXBBFCcATisjK0f/WbxNX8UfkyTd1aq6pt7dnPlMAEoMxQmAU0q4cFHD58dpy7EkubtZ9MztjfVA+1rMZwJQoihOAJzO+oPnNHJBnM6kZqp8OU+9e39rta9XyexYAMoAihMAp2EYhuavO6Ip32xXts1Q42qBmhUdqbAK5cyOBqCMoDgBcArW7BxNWrJdn8UelSTdGRGqV/q0kK8X85kAlB6KEwCHl5icoeHz47TxyAW5WaSnuzfSwzfVYT4TgFJHcQLg0OIOn9fw+XE6nWJVkK+n3unfSjc3qGx2LABlFMUJgMNauP6IJi3dpqwcQw1DAjRrUKRqVvQzOxaAMoziBMDhZGbbNOXb7Vqw7ogk6fbmVfXqPRHy8+avLADm4m8hAA7lVEqGRs6PV+zh87JYpCdva6iRHesynwmAQ6A4AXAYm45e0PB5cTqZnKEAHw+93b+VOjWsYnYsAMhFcQLgED6PPar/LtmmzGyb6lXx1weDolS7EvOZADgWihMAU2Xl2PTisp2a88chSdJtTUL0Rr+W8mc+EwAHxN9MAExzJtWqUQvite7gOUnSY10a6JFb6snNjflMABwTxQmAKbYeS9KwebFKSMqQv7eH3uzXUrc2CTE7FgBcEcUJQKlbvPGYnv5qq6zZNtWp5KdZg6JUr4q/2bEA4KooTgBKTXaOTVN/2KWPfjsoSercqIrevK+lAn08TU4GAPahOAEoFefSMjX603j9sf+sJGnMLfU0tksD5jMBcCpFKk4ZGRny8fHJ97ETJ06oWrVq1xQKgGvZnpCkoXPjdPzCRfl5uev1vhHq1oy/JwA4H7eibNS6dWtt2rTpsuVfffWVWrRoca2ZALiQbzYnqM+MP3T8wkXVqlhOi0e1pzQBcFpFKk4dO3bU9ddfr2nTpkmS0tLSNHjwYEVHR+uZZ54p1oAAnFOOzdDU73dqzMKNysiyqUODylo66kY1CAkwOxoAFFmRhuree+899ejRQw899JC+++47nThxQv7+/lq/fr2aNWtW3BkBOJkL6Zl6ZOFG/br3jCRpRMe6evK2hnJnPhMAJ1fkyeHdu3fX3XffrRkzZsjDw0PffvstpQmAdp1M1tC5cTpyLl2+nu569d4WuqNFqNmxAKBYFGmobv/+/WrXrp2+++47rVixQk899ZR69uypp556SllZWcWdEYCT+H7rCd393h86ci5dYRV89fXIGyhNAFyKxTAMo7AbBQQEqEePHpo5c6aCg4MlSX/88YcGDRqkgIAAbdy4sbhzFllycrKCgoKUlJSkwMBAs+MALinHZuiNlbs1ffV+SdKN9Srpnf6tVN7Py+RkAHB1hekKRfrE6b333tOiRYtyS5Mk3XDDDdq4caNat25dlF3mKycnRxMnTlTt2rXl6+urunXr6vnnn1cRuh6AEpJ0MUsPfrIhtzQNvbmO5gy5jtIEwCUVaY5TdHR0vssDAgL00UcfXVOgf5o2bZpmzJihTz75RE2bNlVsbKyGDBmioKAgjRkzptieB0DR7E1M0dB5cTp4Jk3eHm565Z4W6tWyutmxAKDEFKk4zZ07t8DHLBZLgcWqsP744w/16tVLPXr0kCTVqlVLCxcu1Pr164tl/wCKbsX2k3r8s01Ky8xR9WBfvR8dqWbVg8yOBQAlqkjF6dFHH81zPysrS+np6fLy8lK5cuWKrTjdcMMNmjVrlvbs2aMGDRpo8+bN+u233/TGG28UuI3VapXVas29n5ycXCxZAPzNMAy9vWqf3vxpjyTp+joVNP3+1qro721yMgAoeUUqTufPn79s2d69ezVixAiNGzfumkNd8vTTTys5OVmNGjWSu7u7cnJy9OKLL2rAgAEFbjN16lRNmTKl2DIAyGvun4dzS9OQ9rX0zO2N5elepOmSAOB0inRVXUFiY2M1cOBA7dq1q1j2t2jRIo0bN06vvvqqmjZtqk2bNmns2LF64403FBMTk+82+X3iFBYWxlV1QDH4de9pDZ69QTk2Q091a6iRHeuZHQkArllhrqor8hdg5rszDw8lJCQU2/7GjRunp59+Wvfdd58kqXnz5jp8+LCmTp1aYHHy9vaWtzdDBkBxO3A6VaMWxCvHZuju1tU1okNdsyMBQKkrUnH65ptv8tw3DEMnTpzQu+++q/bt2xdLMElKT0+Xm1veIQB3d3fZbLZiew4AV5eUnqWHPolVcka2WocH66W7msti4edTAJQ9RSpOvXv3znPfYrGocuXKuuWWW/T6668XRy5J0p133qkXX3xR4eHhatq0qTZu3Kg33nhDDzzwQLE9B4Ary86xafTCeB04k6bQIB+9Hx0lH093s2MBgCmKVJxK6xOfd955RxMnTtTIkSN16tQphYaGatiwYZo0aVKpPD8A6YVlO/Xr3jPy9XTXBzFRqhzAUDiAsqtYJ4c7In5yBSi6BesO6z+Lt0mSZg5srW7NqpmcCACKX4lMDn/88cftDnCl71kC4Bz+2H9Gk5dulyQ9eVsDShMAqBDFyd4f7mXCKOD8Dp9N08gF8cq2GeoZEapRnfjaAQCQClGcVq9erQMHDqhWrVqXXekGwHWkZGTpwU9idSE9SxE1gvTKPS34BxEA/J9CNaD69evrzJkzuff79eunxMTEYg8FwBw5NkNjFm7UvlOpqhroo1mDuIIOAP6pUMXp3/PIv//+e6WlpRVrIADmefmHnVq9+7R8PN30waAohQT6mB0JABwKY24AJEmfxx7VB78elCS9dm+EmtcIMjkRADieQhUni8Vy2VwH5j4Azm/DoXP6z+KtkqQxnevrjhahJicCAMdUqC/ANAxDgwcPzv0tuIyMDA0fPlx+fn551vv666+LLyGAEnX0XLqGzYtTVo6h25tX1djO9c2OBAAOq1DF6d8/rDtw4MBiDQOgdKVas/Xw3FidS8tU09BAvXZvhNzc+BQZAApSqOI0e/bsksoBoJTZbIbGLtqkXSdTVDnAWx/GRKmcV5F+hQkAygwmhwNl1Ks/7tZPOxPl5eGmWdGRqhbka3YkAHB4FCegDFq88ZhmrNkvSXqlTwu1Ci9vciIAcA4UJ6CMiT9yXuO/+vsKupEd66p3q+omJwIA50FxAsqQhAsXNXRunDKzbbq1SYievK2h2ZEAwKlQnIAyIj3z7yvozqRa1ahqgN7q15Ir6ACgkChOQBlgsxl64vPN2p6QrIp+XvowJkp+3lxBBwCFRXECyoC3Vu3VD9tOytPdovejI1WjfDmzIwGAU6I4AS7u280JenvVXknSS3c1V1StCiYnAgDnRXECXNiWYxf05BebJUlDb66je6PCTE4EAM6N4gS4qMTkDD08N1bWbJs6Nays8d0amR0JAJwexQlwQRlZORo6N1aJyVbVr+Kvt/u3kjtX0AHANaM4AS7GMAyN+3KLNh9LUvlynvoo5joF+HiaHQsAXALFCXAx7/68T99uTpCHm0XvDYhUeEWuoAOA4kJxAlzI8m0n9PrKPZKk53s3U7u6FU1OBACuheIEuIjtCUl67LO/r6AbfEMt9W8TbnIiAHA9FCfABZxKydDDn8TqYlaObqpfSf/t0djsSADgkihOgJPLyMrRsHlxSkjKUJ1Kfnr3/tbycOelDQAlgb9dASdmGIae+XqrNh65oEAfD30YE6UgX66gA4CSQnECnNj7aw/o643H5f5/V9DVqexvdiQAcGkUJ8BJ/bQjUdOW75IkTb6ziW6sX8nkRADg+ihOgBPadTJZjy7aKMOQBrQNV/T1Nc2OBABlAsUJcDJnU6166JNYpWXmqF2dinq2Z1NZLPycCgCUBooT4EQys20aMT9ex85fVM2K5fTegNby5Ao6ACg1/I0LOAnDMPTfJVu1/tA5BXh76KOYKJX38zI7FgCUKRQnwEl8/PshfR57TG4W6e37W6lelQCzIwFAmUNxApzA6t2n9OKyHZKkZ25vrE4Nq5icCADKJooT4OD2nUrRmE83ymZI/aLC9OCNtc2OBABlFsUJcGDn0zL14CexSrFmq02tCnq+dzOuoAMAE1GcAAeVlWPTyAXxOnw2XTXK+2rGwNby8uAlCwBm4m9hwAEZhqFnv9muPw+clZ+Xuz6MiVJFf2+zYwFAmUdxAhzQvL8Oa8G6I7JYpP/d10qNqgaaHQkAIIoT4HB+23tGU779+wq68d0aqUuTEJMTAQAuoTgBDuTA6VSNXBCnHJuhu1tX17Cb65gdCQDwDxQnwEEkpWfpoU9ilZyRrdbhwXrpruZcQQcADobiBDiA7BybRi+M14EzaQoN8tHM6Ej5eLqbHQsA8C8UJ8ABvLBsp37de0a+nu76ICZKVQJ8zI4EAMiHwxen48ePa+DAgapYsaJ8fX3VvHlzxcbGmh0LKDafrjuiOX8ckiS92S9CTUODzA0EACiQh9kBruT8+fNq3769OnXqpB9++EGVK1fW3r17Vb58ebOjAcXiz/1nNWnpNknSE7c2ULdm1UxOBAC4EocuTtOmTVNYWJhmz56du6x2bX6nC67hyNl0jVgQp2yboTsjQjX6lnpmRwIAXIVDD9V98803ioqK0r333qsqVaqoVatW+uCDD8yOBVyzlIwsPfjJBl1Iz1KLGkF69Z4WXEEHAE7AoYvTgQMHNGPGDNWvX18rVqzQiBEjNGbMGH3yyScFbmO1WpWcnJznBjiSHJuhMQs3au+pVIUEeuuDQVFcQQcATsKhh+psNpuioqL00ksvSZJatWqlbdu2aebMmYqJicl3m6lTp2rKlCmlGRMolGnLd2n17tPy9nDTB4OiFBLIFXQA4Cwc+hOnatWqqUmTJnmWNW7cWEeOHClwmwkTJigpKSn3dvTo0ZKOCdjti9ijmrX2gCTptXsj1KJGsLmBAACF4tCfOLVv3167d+/Os2zPnj2qWbNmgdt4e3vL25tfkYfjiT10Ts8s3ipJGtO5vu6MCDU5EQCgsBz6E6fHHntMf/31l1566SXt27dPn376qWbNmqVRo0aZHQ0olKPn0jVsXpyycgx1b1ZVYzvXNzsSAKAIHLo4XXfddVq8eLEWLlyoZs2a6fnnn9dbb72lAQMGmB0NsFuaNVsPz43V2bRMNQ0N1Ot9I+TmxhV0AOCMLIZhGGaHKEnJyckKCgpSUlKSAgMDzY6DMsZmMzRsfpxW7khUJX9vfTO6vUKDfc2OBQD4h8J0BYf+xAlwdq/9uFsrdyTKy8NNswZFUpoAwMlRnIASsmTjcb23Zr8kaVqf5modzk8FAYCzozgBJWDjkfN66qstkqQRHevqrlY1TE4EACgOFCegmCVcuKiH58YpM9umW5uEaNxtDc2OBAAoJhQnoBilZ/59Bd2ZVKsaVQ3Qm/1acgUdALgQihNQTGw2Q09+sVnbE5JV0c9LHwyKkr+3Q3/HLACgkChOQDH536q9+n7rSXm6WzQzOlJhFcqZHQkAUMwoTkAx+G5Lgv63aq8k6cW7muu6WhVMTgQAKAkUJ+AabTl2QU98vlmS9PBNtdU3KszkRACAkkJxAq5BYnKGHp4bK2u2TR0bVtbT3RubHQkAUIIoTkARZWTlaOjcWCUmW1Wvir/e7t9K7lxBBwAujeIEFIFhGHrqyy3afCxJweU89VFMlAJ9PM2OBQAoYRQnoAimr96nbzYnyMPNohkDIlWzop/ZkQAApYDiBBTS8m0n9dqPeyRJz/VqpnZ1K5qcCABQWihOQCFsT0jSY59tkiQNvqGW7m8bbm4gAECpojgBdjqdYtXDn8TqYlaObqpfSf/twRV0AFDWUJwAO1izczRsXqwSkjJUp5Kf3u3fWh7uvHwAoKzhb37gKgzD0ISvtyr+yAUF+njow5goBZXjCjoAKIsoTsBVzFp7QF/HH5e7m0XTB7RWncr+ZkcCAJiE4gRcwaqdiXp5+S5J0qQ7muim+pVNTgQAMBPFCSjA7pMpGrNwowxDGtA2XIPa1TQ7EgDAZBQnIB/n0jL14CcblJaZo+vrVNCzPZvKYuHnVACgrKM4Af+SmW3T8PlxOnb+ompWLKcZAyLlyRV0AABRnIA8DMPQxCXbtP7gOQV4e+jDQVEq7+dldiwAgIOgOAH/MPv3Q/os9qjcLNLb97dS/ZAAsyMBABwIxQn4P2t2n9ILy3ZIkp65vbE6NaxiciIAgKOhOAGS9p1K1SOfbpTNkPpG1dCDN9Y2OxIAwAFRnFDmXUjP1EOfbFCKNVvX1Sqv53s34wo6AEC+KE4o07JybBq5IF6HzqarerCvZg6MlLeHu9mxAAAOiuKEMm3Kt9v1x/6z8vNy10eDo1TR39vsSAAAB0ZxQpk1789Dmv/XEVks0lv3tVKjqoFmRwIAODiKE8qk3/ed0bPf/n0F3VNdG+nWJiEmJwIAOAOKE8qcg2fSNHJBvHJshu5uVV3DO9QxOxIAwElQnFCmJF3M0oOfbFDSxSy1Cg/WS3c35wo6AIDdKE4oM7JzbBr9abwOnE5TaJCP3o+OlI8nV9ABAOxHcUKZ8eL3O/Xr3jPy9XTXrEFRqhLgY3YkAICToTihTFi4/ohm/35IkvRG3wg1qx5kbiAAgFOiOMHl/XXgrCYu2SZJevzWBurevJrJiQAAzoriBJd25Gy6RsyPU7bN0J0RoXrklnpmRwIAODGKE1xWSsbfV9CdT89SixpBevWeFlxBBwC4JhQnuKQcm6FHF23S3lOpCgn01geDoriCDgBwzShOcEmvLN+ln3edkreHm2ZFRykkkCvoAADXjuIEl/NF7FG9v/aAJOnVeyMUERZsbiAAgMugOMGlxB46p/8s/vsKujG31FPPiFCTEwEAXAnFCS7j2Pl0DZsXp8wcm7o3q6qxXRqYHQkA4GIoTnAJadZsPfRJrM6mZapJtUC93jdCbm5cQQcAKF4UJzg9m83QY59t0q6TKark760PYqJUzsvD7FgAABfkVMXp5ZdflsVi0dixY82OAgfy+srd+nFHorzc3fR+dKSqB/uaHQkA4KKcpjht2LBB77//vlq0aGF2FDiQpZuOa/rq/ZKkl/s0V2TN8iYnAgC4MqcoTqmpqRowYIA++OADlS/PGyP+tvHIeY37coskaXiHurq7dQ2TEwEAXJ1TFKdRo0apR48e6tKly1XXtVqtSk5OznOD6zmRdFFD58UpM9umLo2r6KmuDc2OBAAoAxx+Bu2iRYsUHx+vDRs22LX+1KlTNWXKlBJOBTOlZ2br4bmxOp1iVcOQAL11XyuuoAMAlAqH/sTp6NGjevTRR7VgwQL5+Nj3kxkTJkxQUlJS7u3o0aMlnBKlyWYz9OQXm7XteLIq+Hnpw5go+Xs7fP8HALgIh37HiYuL06lTp9S6devcZTk5OVq7dq3effddWa1Wubvn/eFWb29veXt7l3ZUlJK3f96r77eelKe7RTMHRiqsQjmzIwEAyhCHLk6dO3fW1q1b8ywbMmSIGjVqpPHjx19WmuDalm05obd+2itJerF3c7WpXcHkRACAssahi1NAQICaNWuWZ5mfn58qVqx42XK4tq3HkvTEF5skSQ/dWFt9rwszNxAAoExy6DlOgCSdSs7Qw3NjlZFlU4cGlTXh9sZmRwIAlFEO/YlTftasWWN2BJSijKwcPTw3VieTM1Svir/eub+V3LmCDgBgEj5xgsMyDEPjv9qizceSFFzOUx8OilKgj6fZsQAAZRjFCQ7rvTX7tXRTgjzcLHpvQGvVquRndiQAQBlHcYJDWr7tpF5dsVuSNKVXU91Qt5LJiQAAoDjBAe1ISNbjn2+SJMW0q6kBbWuaGwgAgP9DcYJDOZ1i1UOfbFB6Zo5urFdJE+9oYnYkAAByUZzgMKzZORo+P04JSRmqXclP0+9vLQ93/hcFADgO3pXgEAzD0DNfb1Pc4fMK9PHQhzFRCirHFXQAAMdCcYJD+ODXA/oq/pjc3SyaPqC16lb2NzsSAACXoTjBdKt2JmrqD7skSRN7NNZN9SubnAgAgPxRnGCq3SdTNGbhRhmGdH/bcMXcUMvsSAAAFIjiBNOcS8vUQ3M3KC0zR9fXqaApPZvKYuHnVAAAjoviBFNkZts0fH6cjp67qPAK5TRjQKQ8uYIOAODgeKdCqTMMQ5OWbtP6g+fk7+2hj2KiVN7Py+xYAABcFcUJpW7274e0aMNRuVmkd/q3Uv2QALMjAQBgF4oTStUve07rhWU7JEnP3N5YnRpVMTkRAAD2ozih1Ow7larRn8bLZkj3RtbQgzfWNjsSAACFQnFCqbiQnqmHPtmglIxsXVervF64qxlX0AEAnA7FCSUuK8emUZ/G69DZdFUP9tWMgZHy9nA3OxYAAIVGcUKJe+7bHfp931mV83LXhzFRquTvbXYkAACKhOKEEjXvz0Oa99dhWSzS/+5rpcbVAs2OBABAkVGcUGL+2HdGz3779xV047o21K1NQkxOBADAtaE4oUQcPJOmEQvilWMzdFer6hrRoa7ZkQAAuGYUJxS7pItZevCTDUq6mKWWYcGaendzrqADALgEihOKVXaOTY8s3KgDp9NULchHswZFyseTK+gAAK6B4oRi9dL3u7R2z2n5errrg0FRqhLgY3YkAACKDcUJxWbR+iP6+PeDkqTX+0aoWfUgkxMBAFC8KE4oFusOnNXEpdskSY91aaDbm1czOREAAMWP4oRrdvRcuobPj1NWjqE7WlTTmM71zI4EAECJoDjhmqRk/H0F3fn0LLWoEaRX74ngCjoAgMuiOKHIcmyGxi7apD2JqaoS4K1Z0VHy9eIKOgCA66I4ocheWbFLq3adkreHm2YNilLVIK6gAwC4NooTiuTLuGN6/5cDkqRX7mmhlmHB5gYCAKAUUJxQaHGHz+mZr7dKkh65pZ56taxuciIAAEoHxQmFcux8uobNi1Nmjk1dm4bosS4NzI4EAECpoTjBbmnWbD08N05nUjPVuFqg3ujbUm5uXEEHACg7KE6wi81m6PHPN2nniWRV8vfShzFR8vP2MDsWAACliuIEu7yxco9WbE+Ul7ub3o+OUvVgX7MjAQBQ6ihOuKqlm47r3dX7JElT726uyJrlTU4EAIA5KE64ok1HL2jcl1skScM61FGfyBomJwIAwDwUJxToRNJFPTw3VpnZNnVuVEVPdW1kdiQAAExFcUK+LmbmaOjcOJ1OsaphSID+17+V3LmCDgBQxlGccBnDMPTkF5u19XiSypfz1IcxUfLnCjoAAChOuNzbq/Zp2dYT8nS3aObASIVVKGd2JAAAHALFCXks23JCb/60R5L0Qu9malunosmJAABwHBQn5Np2PElPfLFJkvRA+9rqd124uYEAAHAwFCdIkk4lZ+ihT2KVkWVThwaV9cztXEEHAMC/OXxxmjp1qq677joFBASoSpUq6t27t3bv3m12LJeSkZWjh+fF6WRyhupW9tM797eSh7vD/68BAECpc/h3x19++UWjRo3SX3/9pZUrVyorK0u33Xab0tLSzI7mEgzD0NNfbdHmoxcU5OupD2OuU6CPp9mxAABwSA5/jfny5cvz3J8zZ46qVKmiuLg43XzzzSalch3vrdmvJZsS5O5m0YwBrVW7kp/ZkQAAcFgOX5z+LSkpSZJUoUKFfB+3Wq2yWq2595OTk0sllzNauSNRr674e9jz2Z5NdUO9SiYnAgDAsTn8UN0/2Ww2jR07Vu3bt1ezZs3yXWfq1KkKCgrKvYWFhZVySudwJtWqp77cLEmKvr6moq+vaXIiAAAcn1MVp1GjRmnbtm1atGhRgetMmDBBSUlJubejR4+WYkLnYBiGJi7ZpvPpWWpcLVAT72hidiQAAJyC0wzVjR49Wt99953Wrl2rGjVqFLiet7e3vL29SzGZ81m29YR+2HZSHm4WvXZvC3l5OFV/BgDANA5fnAzD0COPPKLFixdrzZo1ql27ttmRnNqZVKsmLd0uSRrZqZ6ahgaZnAgAAOfh8MVp1KhR+vTTT7V06VIFBATo5MmTkqSgoCD5+vqanM75TFq6TefSMtWoaoBGd6pndhwAAJyKw4/RzJgxQ0lJSerYsaOqVauWe/vss8/MjuZ0lm05oe+3npS7m0Wv3RvBEB0AAIXk8J84GYZhdgSXcCbVqolLt0mSRnWsq2bVGaIDAKCw+MihjJi8dPv/H6K7pb7ZcQAAcEoUpzJg2ZYTWrb1BEN0AABcI95BXdxZhugAACg2FCcXN4khOgAAig3FyYUxRAcAQPHindRFnU21atL/DdGNZIgOAIBiQXFyUZO+2a6zaZlqGBKg0bfwRZcAABQHipML+n7rCS3b8v+H6Lw93M2OBACAS6A4uZizqVZNXPL3EN2IDnXVvAZDdAAAFBeKk4uZ/I8hukc6M0QHAEBxoji5kB+2ntB3DNEBAFBiKE4u4lxapv7LEB0AACWK4uQiJi3dxhAdAAAljOLkAv45RPfqvS0YogMAoIRQnJzcubTM3N+iG96hjlrUCDY3EAAALozi5OQmf7NdZ1Iz1SDEX2M681t0AACUJIqTE1u+7YS+3ZzAVXQAAJQSipOT+udVdMNuZogOAIDSQHFyUs/+3xBd/Sr+erQLQ3QAAJQGipMTWr7tpL5hiA4AgFJHcXIy59My9d8lWyX9PUQXERZsbiAAAMoQipOTmcwQHQAApqE4OZFLQ3RuFjFEBwCACShOTuL8P6+i61CXIToAAExAcXISz367XWdSrX8P0fFFlwAAmILi5ARWbD+ppZv+HqJ79d4I+XgyRAcAgBkoTg7ufFqm/rP47yG6oTfXVUuG6AAAMA3FycFN+b8hunpV/DWWq+gAADAVxcmBLVp/REs2/f+r6BiiAwDAXB5mB8DlDMPQzF8OaNryXZKkER0ZogMAwBFQnByMzWboxe936qPfDkqShnWooydva2hyKgAAIFGcHEpmtk3jvtyspZsSJEn/7dFYD91Ux+RUAADgEoqTg0izZmvEgnit3XNaHm4WvXpvC93VqobZsQAAwD9QnBzAubRMDZmzQZuPXpCvp7tmDGytjg2rmB0LAAD8C8XJZMfOp2vQx+t14HSaypfz1MeDr1Or8PJmxwIAAPmgOJlo98kUDfp4nRKTrQoN8tHcB9uqXhV/s2MBAIACUJxMsuHQOT04Z4OSM7LVIMRfnzzQRtWCfM2OBQAAroDiZIKVOxI1+tN4WbNtiqpZXh/FXKegcp5mxwIAAFdBcSpln284qqe/3iKbIXVuVEXv3t9avl58IzgAAM6A4lRKDMPQe2v269UVuyVJ90bW0NS7m8vDnV+9AQDAWVCcSoHNZuj5ZTs0+/dDkv7+CZWnujaUxWIxNxgAACgUilMJy8y26ckvNuubzX9/G/jEO5rowRtrm5wKAAAUBcWpBKVaszVifpx+3XtGHm4Wvd43Qr1aVjc7FgAAKCKKUwk5m2rVkDkbtOVYksp5uWvGwEh1aFDZ7FgAAOAaUJxKwNFz6Yr5eL0OnPn728BnD2mjlmHBZscCAADXiOJUzHaeSFbMx+t1KsWq6sG+mvtgG9WtzLeBAwDgCpziWvjp06erVq1a8vHxUdu2bbV+/XqzI+Vr/cFz6vv+nzqVYlXDkAB9NeIGShMAAC7E4YvTZ599pscff1yTJ09WfHy8IiIi1LVrV506dcrsaHms2H5SAz9ap5SMbEXVLK/Ph7VT1SAfs2MBAIBi5PDF6Y033tDDDz+sIUOGqEmTJpo5c6bKlSunjz/+2OxouRatP6IR8+OUmW1Tl8Yhmv9QW35CBQAAF+TQxSkzM1NxcXHq0qVL7jI3Nzd16dJFf/75p4nJ/mYYhqav3qenv94qmyH1jaqhmQNby8eTn1ABAMAVOfTk8DNnzignJ0chISF5loeEhGjXrl35bmO1WmW1WnPvJycnl1i+BeuO5P6EysiOdTWObwMHAMClOfQnTkUxdepUBQUF5d7CwsJK7Ll6t6quiBpBmnRHEz3VrRGlCQAAF+fQxalSpUpyd3dXYmJinuWJiYmqWrVqvttMmDBBSUlJubejR4+WWD5/bw99OeIGPcBPqAAAUCY4dHHy8vJSZGSkVq1albvMZrNp1apVateuXb7beHt7KzAwMM+tJHm6O/QfIQAAKEYOPcdJkh5//HHFxMQoKipKbdq00VtvvaW0tDQNGTLE7GgAAKCMcfji1K9fP50+fVqTJk3SyZMn1bJlSy1fvvyyCeMAAAAlzWIYhmF2iJKUnJysoKAgJSUllfiwHQAAcD6F6QpM0AEAALATxQkAAMBOFCcAAAA7UZwAAADsRHECAACwE8UJAADAThQnAAAAO1GcAAAA7ERxAgAAsBPFCQAAwE4UJwAAADtRnAAAAOxEcQIAALATxQkAAMBOFCcAAAA7UZwAAADs5GF2gJJmGIYkKTk52eQkAADAEV3qCJc6w5W4fHFKSUmRJIWFhZmcBAAAOLKUlBQFBQVdcR2LYU+9cmI2m00JCQkKCAiQxWIp9v0nJycrLCxMR48eVWBgYLHv35GUpWOVytbxlqVjlcrW8XKsrqssHW9JH6thGEpJSVFoaKjc3K48i8nlP3Fyc3NTjRo1Svx5AgMDXf5/3EvK0rFKZet4y9KxSmXreDlW11WWjrckj/VqnzRdwuRwAAAAO1GcAAAA7ERxukbe3t6aPHmyvL29zY5S4srSsUpl63jL0rFKZet4OVbXVZaO15GO1eUnhwMAABQXPnECAACwE8UJAADAThQnAAAAO1Gc7DB9+nTVqlVLPj4+atu2rdavX3/F9b/44gs1atRIPj4+at68ub7//vtSSlp0U6dO1XXXXaeAgABVqVJFvXv31u7du6+4zZw5c2SxWPLcfHx8SinxtXn22Wcvy96oUaMrbuOM51WSatWqddmxWiwWjRo1Kt/1ne28rl27VnfeeadCQ0NlsVi0ZMmSPI8bhqFJkyapWrVq8vX1VZcuXbR3796r7rewr/vScKVjzcrK0vjx49W8eXP5+fkpNDRUgwYNUkJCwhX3WZTXQmm52rkdPHjwZdm7det21f0627mVlO9r2GKx6NVXXy1wn456bu15v8nIyNCoUaNUsWJF+fv7q0+fPkpMTLzifov6Wi8sitNVfPbZZ3r88cc1efJkxcfHKyIiQl27dtWpU6fyXf+PP/5Q//799eCDD2rjxo3q3bu3evfurW3btpVy8sL55ZdfNGrUKP31119auXKlsrKydNtttyktLe2K2wUGBurEiRO5t8OHD5dS4mvXtGnTPNl/++23Atd11vMqSRs2bMhznCtXrpQk3XvvvQVu40znNS0tTREREZo+fXq+j7/yyit6++23NXPmTK1bt05+fn7q2rWrMjIyCtxnYV/3peVKx5qenq74+HhNnDhR8fHx+vrrr7V792717NnzqvstzGuhNF3t3EpSt27d8mRfuHDhFffpjOdWUp5jPHHihD7++GNZLBb16dPnivt1xHNrz/vNY489pm+//VZffPGFfvnlFyUkJOjuu+++4n6L8lovEgNX1KZNG2PUqFG593NycozQ0FBj6tSp+a7ft29fo0ePHnmWtW3b1hg2bFiJ5ixup06dMiQZv/zyS4HrzJ492wgKCiq9UMVo8uTJRkREhN3ru8p5NQzDePTRR426desaNpst38ed+bxKMhYvXpx732azGVWrVjVeffXV3GUXLlwwvL29jYULFxa4n8K+7s3w72PNz/r16w1JxuHDhwtcp7CvBbPkd7wxMTFGr169CrUfVzm3vXr1Mm655ZYrruMs5/bf7zcXLlwwPD09jS+++CJ3nZ07dxqSjD///DPffRT1tV4UfOJ0BZmZmYqLi1OXLl1yl7m5ualLly76888/893mzz//zLO+JHXt2rXA9R1VUlKSJKlChQpXXC81NVU1a9ZUWFiYevXqpe3bt5dGvGKxd+9ehYaGqk6dOhowYICOHDlS4Lqucl4zMzM1f/58PfDAA1f87UZnPq//dPDgQZ08eTLPuQsKClLbtm0LPHdFed07qqSkJFksFgUHB19xvcK8FhzNmjVrVKVKFTVs2FAjRozQ2bNnC1zXVc5tYmKili1bpgcffPCq6zrDuf33+01cXJyysrLynKdGjRopPDy8wPNUlNd6UVGcruDMmTPKyclRSEhInuUhISE6efJkvtucPHmyUOs7IpvNprFjx6p9+/Zq1qxZges1bNhQH3/8sZYuXar58+fLZrPphhtu0LFjx0oxbdG0bdtWc+bM0fLlyzVjxgwdPHhQN910k1JSUvJd3xXOqyQtWbJEFy5c0ODBgwtcx5nP679dOj+FOXdFed07ooyMDI0fP179+/e/4m97Ffa14Ei6deumuXPnatWqVZo2bZp++eUXde/eXTk5Ofmu7yrn9pNPPlFAQMBVh66c4dzm935z8uRJeXl5XVb4r/bee2kde7cpKpf/kV8U3qhRo7Rt27arjoW3a9dO7dq1y71/ww03qHHjxnr//ff1/PPPl3TMa9K9e/fc/27RooXatm2rmjVr6vPPP7frX3HO6qOPPlL37t0VGhpa4DrOfF7xt6ysLPXt21eGYWjGjBlXXNeZXwv33Xdf7n83b95cLVq0UN26dbVmzRp17tzZxGQl6+OPP9aAAQOuetGGM5xbe99vHAmfOF1BpUqV5O7uftlM/sTERFWtWjXfbapWrVqo9R3N6NGj9d1332n16tWqUaNGobb19PRUq1attG/fvhJKV3KCg4PVoEGDArM7+3mVpMOHD+unn37SQw89VKjtnPm8Xjo/hTl3RXndO5JLpenw4cNauXJloX9J/mqvBUdWp04dVapUqcDszn5uJenXX3/V7t27C/06lhzv3Bb0flO1alVlZmbqwoULeda/2nvvpXXs3aaoKE5X4OXlpcjISK1atSp3mc1m06pVq/L8i/yf2rVrl2d9SVq5cmWB6zsKwzA0evRoLV68WD///LNq165d6H3k5ORo69atqlatWgkkLFmpqanav39/gdmd9bz+0+zZs1WlShX16NGjUNs583mtXbu2qlatmufcJScna926dQWeu6K87h3FpdK0d+9e/fTTT6pYsWKh93G114IjO3bsmM6ePVtgdmc+t5d89NFHioyMVERERKG3dZRze7X3m8jISHl6euY5T7t379aRI0cKPE9Fea1fywHgChYtWmR4e3sbc+bMMXbs2GEMHTrUCA4ONk6ePGkYhmFER0cbTz/9dO76v//+u+Hh4WG89tprxs6dO43Jkycbnp6extatW806BLuMGDHCCAoKMtasWWOcOHEi95aenp67zr+PdcqUKcaKFSuM/fv3G3FxccZ9991n+Pj4GNu3bzfjEArliSeeMNasWWMcPHjQ+P33340uXboYlSpVMk6dOmUYhuuc10tycnKM8PBwY/z48Zc95uznNSUlxdi4caOxceNGQ5LxxhtvGBs3bsy9kuzll182goODjaVLlxpbtmwxevXqZdSuXdu4ePFi7j5uueUW45133sm9f7XXvVmudKyZmZlGz549jRo1ahibNm3K8zq2Wq25+/j3sV7ttWCmKx1vSkqK8eSTTxp//vmncfDgQeOnn34yWrdubdSvX9/IyMjI3YcrnNtLkpKSjHLlyhkzZszIdx/Ocm7teb8ZPny4ER4ebvz8889GbGys0a5dO6Ndu3Z59tOwYUPj66+/zr1vz2u9OFCc7PDOO+8Y4eHhhpeXl9GmTRvjr7/+yn2sQ4cORkxMTJ71P//8c6NBgwaGl5eX0bRpU2PZsmWlnLjwJOV7mz17du46/z7WsWPH5v65hISEGLfffrsRHx9f+uGLoF+/fka1atUMLy8vo3r16ka/fv2Mffv25T7uKuf1khUrVhiSjN27d1/2mLOf19WrV+f7/+6lY7LZbMbEiRONkJAQw9vb2+jcufNlfw41a9Y0Jk+enGfZlV73ZrnSsR48eLDA1/Hq1atz9/HvY73aa8FMVzre9PR047bbbjMqV65seHp6GjVr1jQefvjhywqQK5zbS95//33D19fXuHDhQr77cJZza8/7zcWLF42RI0ca5cuXN8qVK2fcddddxokTJy7bzz+3see1Xhws//fkAAAAuArmOAEAANiJ4gQAAGAnihMAAICdKE4AAAB2ojgBAADYieIEAABgJ4oTAACAnShOAAAAdqI4AXA5gwcPVu/evc2OAcAFUZwAFKvBgwfLYrFcduvWrZsSEhJUvnx5vf3223m2WbdunTw9PfXjjz+alLpo/nl8fn5+ql+/vgYPHqy4uDizowEoIRQnAMWuW7duOnHiRJ7bwoULFRoaqnfeeUcTJkzQ3r17JUkXL15UTEyMHnroId12220mJy+82bNn68SJE9q+fbumT5+u1NRUtW3bVnPnzjU7GoASQHECUOy8vb1VtWrVPLfy5ctLkgYOHKiuXbtq8ODBstlsmjBhgrKysvTqq6/avf8XXnhBVapUUUBAgB566CE9/fTTatmyZYHr22w2vfLKK6pXr568vb0VHh6uF1988VoPU5IUHBysqlWrqlatWrrtttv05ZdfasCAARo9erTOnz9v1z5+++033XTTTfL19VVYWJjGjBmjtLS0YskHoHhRnACUupkzZ2rv3r0aMGCA3n33Xc2ePVv+/v52bbtgwQK9+OKLmjZtmuLi4hQeHq4ZM2ZccZsJEybo5Zdf1sSJE7Vjxw59+umnCgkJKY5Dyddjjz2mlJQUrVy58qrr7t+/X926dVOfPn20ZcsWffbZZ/rtt980evToEssH4BoYAFCMYmJiDHd3d8PPzy/P7cUXX8yz3syZMw1JxogRIwq1/7Zt2xqjRo3Ks6x9+/ZGREREngy9evUyDMMwkpOTDW9vb+ODDz4o0vFciSRj8eLFly2/ePGiIcmYNm3aVffx4IMPGkOHDs2z7NdffzXc3NyMixcvFldUAMXEw+TeBsAFderU6bJPgSpUqJD73zk5OZozZ47KlSunv/76S9nZ2fLwsO+vo927d2vkyJF5lrVp00Y///xzvuvv3LlTVqtVnTt3LuRRFJ1hGJL+njx+NZs3b9aWLVu0YMGCPNvbbDYdPHhQjRs3LrGcAAqP4gSg2Pn5+alevXoFPv7aa6/pwIEDio2NVYcOHfTSSy9p0qRJJZLF19e3RPZ7JTt37pQk1a5d+6rrpqamatiwYRozZsxlj4WHhxd7NgDXhjlOAErV9u3bNXnyZM2YMUONGzfWjBkz9MILL2jLli12bd+wYUNt2LAhz7J/3/+n+vXry9fXV6tWrbqm3IXx1ltvKTAwUF26dLnquq1bt9aOHTtUr169y25eXl6lkBZAYfCJE4BiZ7VadfLkyTzLPDw8FBwcrJiYGN199926++67JUl9+vRRnz59NHjwYK1fv/6qQ3aPPPKIHn74YUVFRemGG27QZ599pi1btqhOnTr5ru/j46Px48frqaeekpeXl9q3b6/Tp09r+/btevDBB6/5WC9cuKCTJ0/KarVqz549ev/997VkyRLNnTtXwcHBV91+/Pjxuv766zV69Gg99NBD8vPz044dO7Ry5Uq9++6715wPQPGiOAEodsuXL1e1atXyLGvYsKHuv/9+HT9+/LIvupw+fbqaNm1q15DdgAEDdODAAT355JPKyMhQ3759c0tXQSZOnCgPDw9NmjRJCQkJqlatmoYPH170A/yHIUOGSPq7oFWvXl033nij1q9fr9atW9u1fYsWLfTLL7/oP//5j2666SYZhqG6deuqX79+xZIPQPGyGJdmMQKAk7r11ltVtWpVzZs3z+woAFwcnzgBcCrp6emaOXOmunbtKnd3dy1cuFA//fSTXd+ZBADXisnhABxK06ZN5e/vn+9twYIFslgs+v7773XzzTcrMjJS3377rb766iu7JmL/20svvVTgc1kslgIf6969u93P0b179wL389JLLxU6MwBzMVQHwKEcPnxYWVlZ+T4WEhKigICAYnuuc+fO6dy5c/k+5uvrq4sXLxb4WPXq1e16juPHjxe4nwoVKuT5fisAjo/iBAAAYCeG6gAAAOxEcQIAALATxQkAAMBOFCcAAAA7UZwAAADsRHECAACwE8UJAADAThQnAAAAO/0/M10CO/rPwf8AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "analyzer.plot_fluxes(result,['EX_glc__D_e'])" ] }, { "cell_type": "markdown", "id": "a3e0ddfe-e2a4-4268-a942-630cd56fe20f", "metadata": {}, "source": [ "-\n", "Below is the visualization of multiple target reactions and the case with two variables." ] }, { "cell_type": "code", "execution_count": 16, "id": "1feff777-e587-4d4b-a9bb-f2e231bd375d", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\86150\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\cobra\\util\\solver.py:554: UserWarning: Solver status is 'infeasible'.\n", " warn(f\"Solver status is '{status}'.\", UserWarning)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABI0AAAJOCAYAAAA6ZPcUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAACf10lEQVR4nOzdd3gU5fr/8c9mk2xCSEINBJQiSEfAUA4iBCSIgAh6UECONMWDggpRlFgoFgJW8IBgOQoqIBYQbBQpIkWQAHpUqoQiHZEAARaSnd8f+ZEvazYhCbM7m837dV1zXWZm9p57Nou595mn2AzDMAQAAAAAAABcIsjqBAAAAAAAAOB/aDQCAAAAAABADjQaAQAAAAAAIAcajQAAAAAAAJADjUYAAAAAAADIgUYjAAAAAAAA5ECjEQAAAAAAAHKg0QgAAAAAAAA50GgEAAAAAACAHGg0QrFTrVo19e/f3+o08rRw4UI1btxYYWFhstlsOnHihNUpBaS2bduqQYMGPr3m7t27ZbPZNH36dJ9eFwBw5agh4G+mT58um82m3bt3Z+9r27at2rZta1lOAAILjUYIGBf/aHraRo4caXV6+fbnn3/qrrvuUnh4uKZMmaIPPvhAERERHs/9+z2HhYWpVq1aGjp0qA4fPpx93ooVK2Sz2fTpp596jNO/f3+VLFnSbV/btm3dYoeGhqp69eq6//77tW/fvgLf1+nTpzV69Gg1aNBAERERKlu2rBo3bqxHHnlEBw4cKHC8/Dpw4IDGjBmjzZs3e+0aAICijRoia4uJiVG7du30zTff5DjfZrNp6NChHq85YsQI1a5dW2FhYSpTpow6duyoL7/8Mse5Fx+c2Gw2Pf/88x7z6tOnj2w2W4665FLNmzeXzWbT1KlTcz3nf//7n3r06KGqVasqLCxMlStXVocOHfSf//zH7bzz589r0qRJatKkiaKiolSqVCnVr19f999/v7Zu3ZprfE9y+wzZbDYNHjy4QLFgrdTUVA0dOlS1atVSiRIlVKJECdWrV09DhgzRzz//nOvrHn/8cdlsNvXs2dPjcbP+DQC+FGx1AoDZnn32WVWvXt1tn697k1yJH3/8UadOndJzzz2nhISEfL3m4j2fO3dOq1at0tSpU/X111/rl19+UYkSJQqdy1VXXaXk5GRJWUXVb7/9pmnTpmnRokXasmVLvmNfuHBBbdq00datW9WvXz899NBDOn36tH799VfNmjVLt99+uypVqlToPPNy4MABjR07VtWqVVPjxo29co2CqFq1qs6ePauQkBCrUwEA/E1xriEMw9Dhw4c1ffp0de7cWV988YVuvfXWPF+7bds2tW/fXkePHtWAAQPUtGlTnThxQjNnzlTXrl312GOP6aWXXsrxurCwMM2ePVtPP/202/709HTNnz9fYWFhuV5zx44d+vHHH1WtWjXNnDlTDzzwQI5z1qxZo3bt2qlKlSoaNGiQKlasqH379umHH37QpEmT9NBDD2Wf+89//lPffPONevfurUGDBunChQvaunWrvvzyS91www2qU6fO5d5CNx06dFDfvn1z7K9Vq1aB4lyJxYsX++xagejLL79Uz549FRwcrD59+qhRo0YKCgrS1q1bNXfuXE2dOlWpqamqWrWq2+sMw9Ds2bNVrVo1ffHFFzp16pQiIyM9XuNK/g0AvkajEQJOp06d1LRpU6vTKLQjR45IkkqVKpXv11x6z/fdd5/Kli2rV199VfPnz1fv3r0LnUt0dLT+9a9/ue2rXr26hg4dqtWrV6tDhw75ivP5559r06ZNmjlzpu6++263Y+fOndP58+cLnWNRc7FHGADA/xT3GkKS7r33XlWoUEGzZ8/Os9HowoUL6tGjh/766y+tXLlSLVq0yD42fPhw9enTRy+//LKaNm2ao9dF586dNXfuXP30009q1KhR9v758+fr/PnzuuWWW7Rs2TKP1/3www8VExOjV155RT169NDu3btVrVo1t3NeeOEFRUdH68cff8zxXlx8j6SsRrYvv/xSL7zwgp588km38yZPnlyooX21atXKUTv5WmhoqKXX9yQ9PT3XXm/+5Pfff1evXr1UtWpVLV26VLGxsW7HJ0yYoDfeeENBQTkH7KxYsUJ//PGHli1bpo4dO2ru3Lnq16+fx+tcyb8BwNcYnoZib8yYMbLZbDn2/32M+LJlyxQUFKRRo0a5nTdr1qzLdpG+6JNPPlFcXJzCw8NVrlw5/etf/9L+/fuzj7dt2zb7j0uzZs1ks9kKNXfCTTfdJCmra63ZKlasKEkKDs5/m/Pvv/8uSWrVqlWOY2FhYYqKipIkvffee7LZbNq0aVOO88aNGye73Z79fl2cj+i3335Tu3btVKJECVWuXFkvvvhi9mtWrFihZs2aSZIGDBiQ3R347/MJ5RXjIqfTqdGjR6tmzZpyOBy6+uqr9fjjj8vpdLqdt2TJEt14440qVaqUSpYsqdq1a7sVop7mNDp06JAGDBigq666Sg6HQ7GxserWrZvb/AQAAP8TiDVEqVKlFB4eftm/85999pl++eUXjRw50q3BSJLsdrvefPNNlSpVSmPGjMnx2pYtW6p69eqaNWuW2/6ZM2fqlltuUZkyZXK97qxZs9SjRw/deuutio6OzhFDyqo76tev77HxLCYmxu08yXN9YrfbVbZs2VzzuFLr1q1T586dVbp0aUVEROi6667TpEmT3M5ZtmyZWrdurYiICJUqVUrdunXTli1bLhu7sHMaffPNN4qPj1dkZKSioqLUrFmzHO/v5T6H0v9Ne/D777+rc+fOioyMVJ8+fSRJLpdLEydOVP369RUWFqYKFSro3//+t/7666985/nzzz/LZrNpwYIF2ftSUlJks9l0/fXXu53bqVOnHJ/PvLz44otKT0/Xe++9l6PBSMqqfx9++GFdffXVOY7NnDlT9erVU7t27ZSQkKCZM2fmep0r+TcA+BqNRgg4aWlpOnbsmNtmhptuukkPPvigkpOTtXHjRknSwYMH9dBDDykhIeGyY9WnT5+uu+66S3a7XcnJyRo0aJDmzp2rG2+8MftJ1lNPPaX7779fUlZ38Q8++ED//ve/C5zrxSLo78XOqVOncrw3x44dy9HwcVFmZmb2OQcPHtSyZcuyG048FVi5udh99/3335dhGLme16NHD4WHh3v8Iztz5ky1bdtWlStXzt73119/6ZZbblGjRo30yiuvqE6dOnriiSey52KoW7eunn32WUnS/fffrw8++EAffPCB2rRpk+8YUlaBc9ttt+nll19W165d9Z///Efdu3fXa6+95vb09Ndff9Wtt94qp9OpZ599Vq+88opuu+02rV69Os/355///KfmzZunAQMG6I033tDDDz+sU6dOae/evXm+DgBgruJYQ1y856NHj+rXX3/VAw88oNOnT1+2t8wXX3whSR6HYklZvZW7deumrVu3aufOnTmO9+7dWx999FF2XXDs2DEtXrw4R4/kS61bt047d+5U7969FRoaqjvuuMNjzVC1alWlpKTol19+yfMeLtYnM2fOVEZGRp7n5te5c+c81lqX9qpesmSJ2rRpo99++02PPPKIXnnlFbVr185tHqhvv/1WHTt21JEjRzRmzBglJiZqzZo1atWqlVceKk2fPl1dunTR8ePHlZSUpPHjx6tx48ZauHCh2zmX+xxelJGRoY4dOyomJkYvv/yy/vnPf0qS/v3vf2vEiBFq1aqVJk2apAEDBmjmzJnq2LGjLly4kK9cGzRooFKlSmnlypXZ+77//nsFBQXpp59+0smTJyVl1W9r1qxxq/su58svv1TNmjUL1NAkZT1c/Oyzz7J7+Pfu3VvLli3ToUOHcn1NYf4NAJYwgADx3nvvGZI8bpeqWrWq0a9fv+yfR48eneOcS+OlpqZm70tPTzdq1qxp1K9f3zh37pzRpUsXIyoqytizZ0+euZ0/f96IiYkxGjRoYJw9ezZ7/5dffmlIMkaNGpXjuj/++GO+7/nbb781jh49auzbt8/46KOPjLJlyxrh4eHGH3/8YRiGYSxfvjzX9+biFhER4RY7Pj7e43l169Y1du3addncLnXmzBmjdu3ahiSjatWqRv/+/Y3//ve/xuHDh3Oc27t3b6NSpUpGZmZm9r6NGzcakoz33nsvR37vv/9+9j6n02lUrFjR+Oc//5m978cff8zx2oLG+OCDD4ygoCDj+++/d3v9tGnTDEnG6tWrDcMwjNdee82QZBw9ejTX9yI1NdUtn7/++suQZLz00ku5vgYA4F3FuYb4++ZwOIzp06fnOF+SMWTIkOyfGzdubERHR+d5jVdffdWQZCxYsMAwjP/7G/jSSy8Zv/zyiyEp+2/rlClTjJIlSxrp6elGv379ctQlhmEYQ4cONa6++mrD5XIZhmEYixcvNiQZmzZtcjtv8eLFht1uN+x2u9GyZUvj8ccfNxYtWmScP3/e7TyXy5VdC1SoUMHo3bu3MWXKlMv+TnKTV501e/ZswzAMIyMjw6hevbpRtWpV46+//sqRz0WNGzc2YmJijD///DN7308//WQEBQUZffv2zd7n6bMWHx9vxMfH5zvvEydOGJGRkUaLFi3cPmOX5lSQz2G/fv0MScbIkSPdYn3//feGJGPmzJlu+xcuXOhxf166dOliNG/ePPvnO+64w7jjjjsMu91ufPPNN4Zh/F/9OH/+/HzFTEtLMyQZ3bt3z3Hsr7/+Mo4ePZq9nTlzxu34p59+akgyduzYYRiGYZw8edIICwszXnvtNbfzrvTfAGAFehoh4EyZMkVLlixx28xSokQJTZ8+XVu2bFGbNm301Vdf6bXXXlOVKlXyfN2GDRt05MgRPfjgg27z2XTp0kV16tTRV199dUV5JSQkqHz58rr66qvVq1cvlSxZUvPmzXPrlSNJo0aNyvHeLFmyRDfffLPHuNWqVcs+55tvvtHEiROVlpamTp066ejRo/nOLzw8XOvWrdOIESMkZT2puvfeexUbG6uHHnrIradT3759deDAAS1fvjx738yZMxUeHp79lOqikiVLuj0JDQ0NVfPmzbVr165855afGJ988onq1q2rOnXquD01vDgM8GKuF7vBz58/Xy6XK1/XDw8PV2hoqFasWFGgrtkAAPMVxxri0nv+8MMP1a5dO913332aO3dunq/La5Lfiy4ev9jz41L169fXddddp9mzZ0vKGnbWrVu3XBfZyMjI0Jw5c9SzZ8/sIYE33XSTYmJicvQ26tChg9auXavbbrtNP/30k1588UV17NhRlStXdhvSZLPZtGjRIj3//PMqXbq0Zs+erSFDhqhq1arq2bNnoeY06tatm8daq127dpKkTZs2KTU1VcOGDcsxfO7ifR08eFCbN29W//793YYpXXfdderQoYO+/vrrAueVlyVLlujUqVMaOXJkjnkXL+ZUmM/h3ycp/+STTxQdHa0OHTq41VNxcXEqWbKkW+13Oa1bt9bGjRuVnp4uSVq1apU6d+6sxo0b6/vvv5eU1fvIZrPpxhtvzFfMi59TT6uWtW3bVuXLl8/epkyZ4nZ85syZatq0qWrWrCkp67PfpUuXPIeoFfTfAGAVJsJGwGnevLlXJ7Fs1aqVHnjgAU2ZMkUdO3bUwIEDL/uaPXv2SJJq166d41idOnW0atWqK8ppypQpqlWrloKDg1WhQgXVrl3b4wR9DRs29LiayocffugxbkREhNv5t9xyi2688UY1bdpU48eP1yuvvJLvHKOjo/Xiiy/qxRdf1J49e7R06VK9/PLLmjx5sqKjo7OXHe3QoYNiY2M1c+ZMtW/fXi6XS7Nnz1a3bt1yFKdXXXVVjrkkSpcunedSqH+Xnxg7duzQli1bVL58eY8xLk6q2bNnT73zzju67777NHLkSLVv31533HGHevTo4fH3IUkOh0MTJkzQo48+qgoVKugf//iHbr31VvXt2zd7/igAgG8Uxxri7/fcu3dvNWnSREOHDtWtt96a66TKkZGRlx2+d+rUqexzPbn77rv1yiuvaPjw4VqzZk2OyagvtXjxYh09elTNmzd3G+7Wrl07zZ49WxMmTHD7W9usWTPNnTtX58+f108//aR58+bptddeU48ePbR582bVq1dPUtbf4aeeekpPPfWUDh48qO+++06TJk3Sxx9/rJCQkFxrpNxcddVVea5cd3EKgbxW5cvrd163bl0tWrTI1ImlrzQnT5/D4OBgXXXVVW77duzYobS0NLd5pS516STll9O6dWtlZGRo7dq1uvrqq3XkyBG1bt1av/76q1ujUb169fI9P9DFz+np06dzHHvzzTd16tQpHT58OMfQzRMnTujrr7/W0KFD3T6brVq10meffabt27fnunpeQf4NAFahpxGKPU8TWEpZ8/l44nQ6tWLFCklZf2TPnDnjrdTyrXnz5kpISFDbtm1Vt27dXBsozBAXF6fo6Gi3ceQFVbVqVQ0cOFCrV69WqVKl3J7C2O123X333frss8907tw5LV++XAcOHPA4t4LdbvcY38hj3qTCxHC5XGrYsKHHJ4dLlizRgw8+KCmr19DKlSv17bff6p577tHPP/+snj17qkOHDrl+niRp2LBh2r59u5KTkxUWFqZnnnlGdevW9TghOADAfwRCDfF3QUFBateunQ4ePKgdO3bkel7dunWVlpaW5/x7Fx/AXGyg+bvevXvr2LFjGjRokMqWLZtrz2dJ2bXCXXfdpWuvvTZ7mzNnjvbv36/vvvvO4+tCQ0PVrFkzjRs3TlOnTtWFCxf0ySefeDw3NjZWvXr10sqVK3Xttdfq448/Nm2uo+LG4XDkqEddLpdiYmJyracuzkOZH02bNlVYWJhWrlyp77//XjExMapVq5Zat26t9evXy+l06vvvv1fr1q3zHTM6OlqxsbEe58Jq0aKFEhISPM7p+cknn8jpdOqVV15x+2wmJiZKUp69jQrybwCwCo1GKPZKly4tSTm6IF98ovJ3o0eP1pYtW/Tyyy8rNTVVI0eOvOw1Lk60uG3bthzHtm3bln28qMjMzPT4FKagSpcurRo1aujgwYNu+/v27auTJ0/qiy++0MyZM1W+fHl17NixUNfIraAviBo1auj48eNq3769EhIScmyXPnULCgpS+/bt9eqrr+q3337TCy+8oGXLll22y3WNGjX06KOPavHixfrll190/vz5AvXkAgD4XqDWEBcbSvL6W3/rrbdKylrkwpOTJ09q/vz5qlOnTvaQnb+rUqWKWrVqpRUrVujOO+/MdcW29PR0zZ8/Xz179tQnn3ySY7vYQ/lyLvao+nvd8XchISG67rrrdOHCBdMmQ7+oRo0akpTnJN15/c63bt2qcuXKmbp8/ZXmlN/PYY0aNfTnn3+qVatWHuupS5eev5yL0wl8//33bo1DrVu3ltPp1MyZM3X48OECTYItZQ2327lzp9avX5/v18ycOVMNGjTw+NlMSEjwuMLfRfn9NwBYiUYjFHsX/1Be2nMmPT1dM2bMyHHuunXr9PLLL2vYsGF69NFHNWLECE2ePDnXp1sXNW3aVDExMZo2bZrb/D3ffPONtmzZoi5duph0N963fPlynT59ukB/2H/66SePRdeePXv022+/5ejqfN111+m6667TO++8o88++0y9evUq9B/Ri0VVYeYluOiuu+7S/v379fbbb+c4dvbs2ezx9MePH89xvHHjxpKU6wp1Z86c0blz59z21ahRQ5GRkbm+BgDgHwKxhrhw4YIWL16s0NBQ1a1bN9fzevTooXr16mn8+PHasGGD2zGXy6UHHnhAf/31l0aPHp3n9Z5//nmNHj1aDz30UK7nzJs3T+np6RoyZIh69OiRY7v11lv12WefZb8/y5cv99jr+OJcQBfrjh07dnjsKXXixAmtXbtWpUuXznVoemFdf/31ql69uiZOnJijNrmYc2xsrBo3bqwZM2a4nfPLL79o8eLF6ty5s6k53XzzzYqMjFRycnKOmuRiTmZ8Du+66y5lZmbqueeey3EsIyOjwLVa69attW7dOi1fvjy70ahcuXKqW7euJkyYkH1OQTz++OMqUaKEBg4cqMOHD+c4/vfP1b59+7Ry5UrdddddHj+bAwYM0M6dO7Vu3bpcr5mffwOAlWjKRLF38803q0qVKrr33ns1YsQI2e12vfvuuypfvrxbIXHu3Dn169dP1157rV544QVJ0tixY/XFF19owIAB+t///pfrU5+QkBBNmDBBAwYMUHx8vHr37q3Dhw9r0qRJqlatmoYPH+6Tey2otLS07LH8GRkZ2rZtm6ZOnarw8PB8PR29aMmSJRo9erRuu+02/eMf/1DJkiW1a9cuvfvuu3I6nRozZkyO1/Tt21ePPfaYJF122d+81KhRQ6VKldK0adMUGRmpiIgItWjRQtWrV893jHvuuUcff/yxBg8erOXLl6tVq1bKzMzU1q1b9fHHH2vRokVq2rSpnn32Wa1cuVJdunRR1apVdeTIEb3xxhu66qqrcp2Ecfv27Wrfvr3uuusu1atXT8HBwZo3b54OHz6sXr16Ffq+AQDeFwg1xDfffKOtW7dKyppTZtasWdqxY4dGjhypqKioXF8XGhqqTz/9VO3bt9eNN96oAQMGqGnTpjpx4oRmzZqljRs36tFHH73s37L4+HjFx8fnec7MmTNVtmxZ3XDDDR6P33bbbXr77bf11Vdf6Y477tBDDz2kM2fO6Pbbb1edOnV0/vx5rVmzRnPmzFG1atU0YMAASVkPte6++2516tRJrVu3VpkyZbR//37NmDFDBw4c0MSJE3Mdxp6b7du3e5wHqUKFCurQoYOCgoI0depUde3aVY0bN9aAAQMUGxurrVu36tdff9WiRYskSS+99JI6deqkli1b6t5779XZs2f1n//8R9HR0R7rpisRFRWl1157Tffdd5+aNWumu+++W6VLl9ZPP/2kM2fOaMaMGaZ8DuPj4/Xvf/9bycnJ2rx5s26++WaFhIRox44d+uSTTzRp0iT16NEj33m3bt1aL7zwgvbt2+fWONSmTRu9+eabqlatWo55lS7n2muv1axZs9S7d2/Vrl1bffr0UaNGjWQYhlJTUzVr1iwFBQVlx501a5YMw9Btt93mMV7nzp0VHBysmTNnqkWLFh7Pyc+/AcBS1i3cBpgrv8vM/n25XMMwjJSUFKNFixZGaGioUaVKFePVV1/NsYTp8OHDDbvdbqxbt87ttRs2bDCCg4ONBx544LI5zpkzx2jSpInhcDiMMmXKGH369DH++OOPQt1HQc5dvny5Icn45JNPPB73tKznxSVoL242m80oU6aMcdtttxkpKSmXze1Su3btMkaNGmX84x//MGJiYozg4GCjfPnyRpcuXYxly5Z5fM3BgwcNu91u1KpVy+Px+Ph4o379+h7vpWrVqm775s+fb9SrV88IDg52W+6+IDHOnz9vTJgwwahfv77hcDiM0qVLG3FxccbYsWONtLQ0wzAMY+nSpUa3bt2MSpUqGaGhoUalSpWM3r17G9u3b8+Oc3Gp1Ys5HDt2zBgyZIhRp04dIyIiwoiOjjZatGhhfPzxxx7vGwBgvuJcQ1y6hYWFGY0bNzamTp3qtvy7YWQtJz9kyJAccY4cOWIkJiYaNWvWNBwOh1GqVCkjISHBWLBgQY5zL11uPC+X1iWHDx82goODjXvuuSfX88+cOWOUKFHCuP322w3DMIxvvvnGGDhwoFGnTh2jZMmSRmhoqFGzZk3joYceMg4fPpz9usOHDxvjx4834uPjjdjYWCM4ONgoXbq0cdNNNxmffvppnjl68vf389ItPj7e7dxVq1YZHTp0MCIjI42IiAjjuuuuM/7zn/+4nfPtt98arVq1MsLDw42oqCija9euxm+//eZ2zt8/a4aRVd/8/Xr5sWDBAuOGG27Ivl7z5s2N2bNnu52Tn8/h5ZaLf+utt4y4uDgjPDzciIyMNBo2bGg8/vjjxoEDBwqU78mTJw273W5ERkYaGRkZ2fs//PBDQ1Ken5nL2blzp/HAAw8YNWvWNMLCwozw8HCjTp06xuDBg43Nmzdnn9ewYUOjSpUqecZq27atERMTY1y4cKFQ/wYAq9kMowAzxgKAjxw7dkyxsbEaNWqUnnnmGavTAQAAAIBihzmNAPil6dOnKzMzU/fcc4/VqQAAAABAscScRgAKLTMzU0ePHs3znJIlS6pkyZL5jrls2bLsVce6d++uatWqXWGWAAAAheONWseXjh49qszMzFyPh4aGqkyZMj7MKG+nT5++7Aq95cuXL/BcU96KCxQHDE8DUGi7d+++7ITSo0ePLtCEjW3bttWaNWvUqlUrffjhh6pcufIVZgkAAFA43qh1fKlatWras2dPrsfj4+O1YsUK3yV0GWPGjNHYsWPzPCc1NbXADxW9FRcoDmg0AlBo586d06pVq/I855prrtE111zjo4wAAADMU9RrndWrV+vs2bO5Hi9durTi4uJ8mFHedu3apV27duV5zo033qiwsDC/iAsUBzQaAQAAAAAAIAcmwgYAAAAAAEAONBoBAAAAAAAgh4BcPa1D0J1WpwAAQKEscX3is2u5DtXy+jWCKm73+jVQMNRJAICiqjjXSStXrtRLL72klJQUHTx4UPPmzVP37t1zPX/u3LmaOnWqNm/eLKfTqfr162vMmDHq2LFjwXIs0NkAAAAAAADwqfT0dDVq1EhTpkzJ1/krV65Uhw4d9PXXXyslJUXt2rVT165dtWnTpgJdNyB7GgEAgMtzyeX1a/B0CgAAFEX+Vid16tRJnTp1yvf5EydOdPt53Lhxmj9/vr744gs1adIk33FoNAIAAAAAAPAxp9Mpp9Ppts/hcMjhcJh+LZfLpVOnTqlMmTIFeh0PAAEAKKYyDZfXNwAAgKLIF3VScnKyoqOj3bbk5GSv3M/LL7+s06dP66677irQ6+hpBAAAAAAA4GNJSUlKTEx02+eNXkazZs3S2LFjNX/+fMXExBTotTQaAQBQTLlkWJ0CAACAX/JFnRTupaFol/roo49033336ZNPPlFCQkKBX8/wNAAAAAAAgAAze/ZsDRgwQLNnz1aXLl0KFYOeRgAAFFO+WBUEAACgKPK3Oun06dPauXNn9s+pqanavHmzypQpoypVqigpKUn79+/X+++/LylrSFq/fv00adIktWjRQocOHZIkhYeHKzo6Ot/XpacRAAAAAACAH9uwYYOaNGmiJk2aSJISExPVpEkTjRo1SpJ08OBB7d27N/v8t956SxkZGRoyZIhiY2Ozt0ceeaRA17W8p9GxY8f07rvvau3atdktXxUrVtQNN9yg/v37q3z58hZnCABAYMo0mNPI31EnAQBgDX+rk9q2bSsjj5ymT5/u9vOKFStMua6lPY1+/PFH1apVS6+//rqio6PVpk0btWnTRtHR0Xr99ddVp04dbdiwIc8YTqdTJ0+edNtcRqaP7gAAAMA7qJMAAIDVbEZeTVVe9o9//EONGjXStGnTZLPZ3I4ZhqHBgwfr559/1tq1a3ONMWbMGI0dO9ZtX3XVVQ1bfa/kDACANy1xfeKza504cLXXr1Gq0j6vXyNQUScBAOCOOsn3LG00Cg8P16ZNm1SnTh2Px7du3aomTZro7NmzucZwOp1yOp1u+26P7q8gm93UXAEA8AWKIVxEnQQAgDvqJN+zdE6jihUrav369bkWQ+vXr1eFChXyjOFwOORwONz2UQgBAHB5mfKvsfpwR50EAIB1qJOyWNpo9Nhjj+n+++9XSkqK2rdvn134HD58WEuXLtXbb7+tl19+2coUAQAALEGdBAAArGZpo9GQIUNUrlw5vfbaa3rjjTeUmZk1MaPdbldcXJymT5+uu+66y8oUAQAIWC6eoPk16iQAAKxDnZTF0jmNLnXhwgUdO3ZMklSuXDmFhIQUOlaHoDvNSgsAAJ/y5Vj9owcqe/0a5Svt9/o1igPqJAAAqJOsYGlPo0uFhIQoNjbW6jQAACg2Mv3juRHygToJAADfok7KEmR1AgAAAAAAAPA/ftPTCAAA+JbL6gQAAAD8FHVSFnoaAQAAAAAAIAd6GgEAUExlsioIAACAR9RJWehpBAAAAAAAgBzoaQQAQDGVyQM0+DObuc82g8IcpsaTJFtoqOkxAQD+gTopCz2NAAAAAAAAkAONRgAAFFMuH2wFsXLlSnXt2lWVKlWSzWbT559/nuOcLVu26LbbblN0dLQiIiLUrFkz7d27t4BXAgAAyJu/1UlWodEIAAD4hfT0dDVq1EhTpkzxePz333/XjTfeqDp16mjFihX6+eef9cwzzygsLMzHmQIAABQPzGkEAEAxlSmb1Sm46dSpkzp16pTr8aeeekqdO3fWiy++mL2vRo0avkgNAAAUM/5WJ1mFnkYAAMBrnE6nTp486bY5nc4Cx3G5XPrqq69Uq1YtdezYUTExMWrRooXHIWwAAAAwB41GAAAUUy7D+1tycrKio6PdtuTk5ALneuTIEZ0+fVrjx4/XLbfcosWLF+v222/XHXfcoe+++84L7w4AACjOfFEnFQUMTwMAAF6TlJSkxMREt30OR8GXPne5sqaL7Natm4YPHy5Jaty4sdasWaNp06YpPj7+ypMFAACAGxqNAAAopnwxVt/hcBSqkejvypUrp+DgYNWrV89tf926dbVq1aorjg8AAHAp5jTKwvA0AADg90JDQ9WsWTNt27bNbf/27dtVtWpVi7ICAAAIbPQ0AgCgmPK3J2inT5/Wzp07s39OTU3V5s2bVaZMGVWpUkUjRoxQz5491aZNG7Vr104LFy7UF198oRUrVliXNAAACEj+VidZxa97Gu3bt08DBw7M8xxPq7K4jEwfZQgAAMyyYcMGNWnSRE2aNJEkJSYmqkmTJho1apQk6fbbb9e0adP04osvqmHDhnrnnXf02Wef6cYbb7QybctQJwEAAG+zGYbht3N2//TTT7r++uuVmZl7cTNmzBiNHTvWbV911VUNW31vpwcAgOmWuD7x2bV+2nu116/RqMo+r1+juAr4Oslm7rPNoLArn1vr72yhoabHBADkbuFf7/jsWtRJWSwdnrZgwYI8j+/ateuyMTytynJ7dP8rSQsAgGKBbtf+jToJAADrUCdlsbTRqHv37rLZbMqrs5PNlvcvytOqLEE2uyn5AQAAWIU6CQAAWM3SOY1iY2M1d+5cuVwuj9vGjRutTA8AgICWqSCvbyg86iQAAKxDnZTF0izj4uKUkpKS6/HLPV0DAAAIVNRJAADAapYOTxsxYoTS09NzPV6zZk0tX77chxkBAFB8uAzG6vsz6iQAAKxDnZTF0kaj1q1b53k8IiJC8fHxPsoGAADAf1AnAQAAq1naaAQAAKzDqiAAAACeUSdlKRozLwEAAAAAAMCn6GkEAEAxlWnw7AgAAMAT6qQsvAsAAAAAAADIgZ5GAAAUUy6eHQEAAHhEnZSFRiMAAAD4HXtECVPj2UqEmxpPkhQaam48h8nxJCmEch8AUHj8FQEAoJhiVRAAAADPqJOy0N8KAAAAAAAAOdDTCACAYopVQQAAADyjTsrCuwAAAAAAAIAc6GkEAEAx5WKsPgAAgEfUSVnoaQQAAAAAAIAc6GkEAEAxlcmzIwAAAI+ok7LwLgAAAAAAACAHehoBAFBMsSoIAACAZ9RJWSx/F86ePatVq1bpt99+y3Hs3Llzev/99y3ICgAAwHrUSQAAwEqWNhpt375ddevWVZs2bdSwYUPFx8fr4MGD2cfT0tI0YMCAPGM4nU6dPHnSbXMZmd5OHQCAIs+lIK9vKDzqJAAArEOdlMXSLJ944gk1aNBAR44c0bZt2xQZGalWrVpp7969+Y6RnJys6Ohoty1VW72YNQAAgPdRJwEAAKvZDMMwrLp4hQoV9O2336phw4aSJMMw9OCDD+rrr7/W8uXLFRERoUqVKikzM/cnYk6nU06n023f7dH9FWSzezV3AAC8YYnrE59da+7vTbx+jTtqbPL6NQJVca+T7CVLmhrPViLc1HiSpNBQc+M5TI4nSSFMYQogcHzz2zifXYs6KYulPY3Onj2r4OD/+0Nms9k0depUde3aVfHx8dq+fftlYzgcDkVFRbltRaEQAgAAyAt1EgAAsJqljx7q1KmjDRs2qG7dum77J0+eLEm67bbbrEgLAIBiIbOIjKUvrqiTAACwDnVSFkvfhdtvv12zZ8/2eGzy5Mnq3bu3LBw9BwAAYBnqJAAAYDVL5zTylg5Bd1qdAgAAheLLOY3m7Gzm9Wv0rPmj16+BgikqdRJzGpmEOY0ABBBfzmlEnZSF/lYAAAAAAADIgUcPAAAUU4zVBwAA8Iw6KQvvAgAAAAAAAHKgpxEAAMVUpmGzOgUAAAC/RJ2UhZ5GAAAAAAAAyIGeRgAAFFMunh0BAAB4RJ2UhUajfDJ72VdJspUtbWq8jD37TI0HAABgFSMz09R4tvAwU+NJksIcpoZzhYWaGk+SDIfd9JiuUHNjGsF8MQMAf0WjEQAAxVSmwRc1AAAAT6iTsvAuAAAAAAAAIAd6GgEAUEy5xKogAAAAnlAnZaGnEQAAAAAAAHKgpxEAAMUUY/UBAAA8o07KwrsAAAAAAACAHOhpBABAMZXJsyMAAACPqJOy8C4AAAAAAAAgB3oaAQBQTLkMVgUBAADwhDopi+U9jbZs2aL33ntPW7dulSRt3bpVDzzwgAYOHKhly5ZZnB0AAIErU0Fe33BlqJMAALCGv9VJK1euVNeuXVWpUiXZbDZ9/vnnl33NihUrdP3118vhcKhmzZqaPn16gd8HS6u5hQsXqnHjxnrsscfUpEkTLVy4UG3atNHOnTu1Z88e3XzzzZctiJxOp06ePOm2uYxMH90BAACAd1AnAQCAi9LT09WoUSNNmTIlX+enpqaqS5cuateunTZv3qxhw4bpvvvu06JFiwp0XUsbjZ599lmNGDFCf/75p9577z3dfffdGjRokJYsWaKlS5dqxIgRGj9+fJ4xkpOTFR0d7balaquP7gAAgKLLZQR5fUPhUScBAGAdf6uTOnXqpOeff1633357vs6fNm2aqlevrldeeUV169bV0KFD1aNHD7322msFuq6l1dyvv/6q/v37S5LuuusunTp1Sj169Mg+3qdPH/388895xkhKSlJaWprbVl11vJk2AADwgoJ0ux48eLBsNpsmTpzos/x8jToJAAAU1tq1a5WQkOC2r2PHjlq7dm2B4lg+EbbNljW5VFBQkMLCwhQdHZ19LDIyUmlpaXm+3uFwyOFwuO0LstnNTxQAgACTKf+a4PFit+uBAwfqjjvuyPW8efPm6YcfflClSpV8mJ01qJMAALCGL+okp9Mpp9Ppts/T3+7COHTokCpUqOC2r0KFCjp58qTOnj2r8PDwfMWxtKdRtWrVtGPHjuyf165dqypVqmT/vHfvXsXGxlqRGgAA8LH8dLvev3+/HnroIc2cOVMhISE+zM73qJMAAAhsnoaRJycnW52WG0t7Gj3wwAPKzPy/yRgbNGjgdvybb77RTTfd5Ou0AAAoFnwx55CZT9BcLpfuuecejRgxQvXr1zcrRb9FnQQAgHV8USclJSUpMTHRbZ8ZvYwkqWLFijp8+LDbvsOHDysqKirfvYwkixuNBg8enOfxcePG+SgTAADgDcnJyRo7dqzbvtGjR2vMmDEFjjVhwgQFBwfr4YcfNik7/0adBABAYDNrKJonLVu21Ndff+22b8mSJWrZsmWB4lg+pxEAALCGL8bqm/UELSUlRZMmTdLGjRuz5/kBAADwFn+b+/H06dPauXNn9s+pqanavHmzypQpoypVqigpKUn79+/X+++/Lynr4dPkyZP1+OOPa+DAgVq2bJk+/vhjffXVVwW6LmvhAgAAr3E4HIqKinLbCtNo9P333+vIkSOqUqWKgoODFRwcrD179ujRRx9VtWrVzE8cAADAj2zYsEFNmjRRkyZNJEmJiYlq0qSJRo0aJUk6ePCg9u7dm31+9erV9dVXX2nJkiVq1KiRXnnlFb3zzjvq2LFjga5LTyMAAIopX4zVN8s999zjcdnYe+65RwMGDLAoKwAAEKj8rU5q27atDMPI9fj06dM9vmbTpk1XdF0ajQAAgF+4XLfrsmXLup0fEhKiihUrqnbt2r5OFQAAoFig0QgAgGIq08+eoG3YsEHt2rXL/vniXEj9+vXz+PQMAADAW/ytTrIKjUYAAMAvXK7b9d/t3r3be8kAAACARqP8spUtbXrMM/UqmhovdM8+U+MBAAKby89WBQEu5Tp71tR4QWHmL2nsCgs1N154iKnxJMkVZjc9ZmaouU/fXSbHkyRXiLn/f3MF8/9LoLihTspCfysAAAAAAADkQE8jAACKKcbqAwAAeEadlIV3AQAAAAAAADnQ0wgAgGLKZTBWHwAAwBPqpCz0NAIAAAAAAEAO9DQCAKCYyuTZEQAAgEfUSVl4FwAAAAAAAJCD3/U0MgxDNhtjBwEA8DbG6hc91EkAAPgGdVIWv+tp5HA4tGXLFqvTAAAA8DvUSQAAwJcs62mUmJjocX9mZqbGjx+vsmXLSpJeffVVX6YFAECx4fK/Z0f4/6iTAACwFnVSFssajSZOnKhGjRqpVKlSbvsNw9CWLVsUERGRr+7XTqdTTqfTbZ/LyFSQzW5mugAAAD5DnQQAAPyBZY1G48aN01tvvaVXXnlFN910U/b+kJAQTZ8+XfXq1ctXnOTkZI0dO9ZtX3XVVQ3VNzVfAAACTSZj9f0WdRIAANaiTspiWX+rkSNHas6cOXrggQf02GOP6cKFC4WKk5SUpLS0NLetuuqYnC0AAIDvUCcBAAB/YOkgvWbNmiklJUVHjx5V06ZN9csvvxR4RRCHw6GoqCi3jS7XAABcnsuweX1D4VEnAQBgHeqkLJYNT7uoZMmSmjFjhj766CMlJCQoMzPT6pQAAAD8AnUSAACwkuWNRhf16tVLN954o1JSUlS1alWr0wEAIOC5DFYFKSqokwAA8C3qpCx+02gkSVdddZWuuuoqq9MAAADwO9RJAADA1/yq0QgAAPhOporGWHoAAABfo07KQn8rAAAAAAAA5EBPIwAAiqmismoHAACAr1EnZaGnEQAAAAAAAHKgpxEAAMUUq4IAAAB4Rp2UhXcBAAAAAAAAOQRkTyOb3W56TFeZSNNjno82N8/whnVMjSdJmf/banpMAIB/cLEqCIqTc07TQ7pKR5gbL8z8GjbDCzEzw8x97pzpMP//Ra4Qc2NmhpgaTpLkCvbGfZseEii2qJOy0NMIAAAAAAAAOQRkTyMAAHB5mawKAgAA4BF1UhZ6GgEAAAAAACAHehoBAFBMsSoIAACAZ9RJWWg0AgCgmHLR7RoAAMAj6qQsNJ0BAAAAAAAgB3oaAQBQTLGULAAAgGfUSVnoaQQAAAAAAIAc6GkEAEAxxVh9AAAAz6iTsvhVo1F6ero+/vhj7dy5U7Gxserdu7fKli2b52ucTqecTqfbPpeRqSCb3ZupAgAA+BR1EgAA8DVLh6fVq1dPx48flyTt27dPDRo00PDhw7VkyRKNHj1a9erVU2pqap4xkpOTFR0d7balurb4In0AAIo0lxHk9Q2F57U6SVt9kT4AAEUadVIWS7PcunWrMjIyJElJSUmqVKmS9uzZo/Xr12vPnj267rrr9NRTT+UZIykpSWlpaW5b9aC6vkgfAADAa7xWJ6mOL9IHAAABwG+Gp61du1bTpk1TdHS0JKlkyZIaO3asevXqlefrHA6HHA6H2z66XAMAcHmM1S86qJMAAPAt6qQslveHstmyfhHnzp1TbGys27HKlSvr6NGjVqQFAABgOeokAABgJct7GrVv317BwcE6efKktm3bpgYNGmQf27Nnz2UneAQAAIXjEk/Q/B11EgAA1qBOymJpo9Ho0aPdfi5ZsqTbz1988YVat27ty5QAAAD8AnUSAACwml81Gv3dSy+95KNMAAAofhir79+okwAAsA51UhbL5zQCAAAAAACA/7F8TiMAAGANnqABAAB4Rp2UhZ5GAAAAAAAAyIGeRgAAFFM8QQMAAPCMOikLPY0AAAAAAACQQ0D2NLKXK2t6TGeZcNNjXgg3t+Xyr+tKmxpPkkptDzM1nst5ztR4AIDC4wka/JrN5GebZ86aG0+SK9TcHDPC7KbGk6TMMPOfEWeGmfv/jgyH+f8vygw1N6YrxNRw3otp8rc7b+RoBOQ3UAQi6qQs9DQCAAB+YeXKleratasqVaokm82mzz//PPvYhQsX9MQTT6hhw4aKiIhQpUqV1LdvXx04cMC6hAEAAAIcjUYAABRTLtm8vhVEenq6GjVqpClTpuQ4dubMGW3cuFHPPPOMNm7cqLlz52rbtm267bbbzHo7AAAAsvlbnWQVOgcCAAC/0KlTJ3Xq1MnjsejoaC1ZssRt3+TJk9W8eXPt3btXVapU8UWKAAAAxQqNRgAAFFO+GKvvdDrldDrd9jkcDjkcjiuOnZaWJpvNplKlSl1xLAAAgEsxp1EWhqcBAACvSU5OVnR0tNuWnJx8xXHPnTunJ554Qr1791ZUVJQJmQIAAODv6GkEAEAx5YsnaElJSUpMTHTbd6W9jC5cuKC77rpLhmFo6tSpVxQLAADAE3oaZaHRCAAAeI1ZQ9EuuthgtGfPHi1btoxeRgAAAF5EoxEAAMVUUXuCdrHBaMeOHVq+fLnKli1rdUoAACBAFbU6yVtoNAIAAH7h9OnT2rlzZ/bPqamp2rx5s8qUKaPY2Fj16NFDGzdu1JdffqnMzEwdOnRIklSmTBmFhoZalTYAAEDAotEIAIBiyt+eoG3YsEHt2rXL/vniXEj9+vXTmDFjtGDBAklS48aN3V63fPlytW3b1ldpAgCAYsDf6iSrWNpotHHjRpUuXVrVq1eXJH3wwQeaNm2a9u7dq6pVq2ro0KHq1atXnjE8LeXrMjIVZLN7LW8AAGC+tm3byjCMXI/ndSwQUScBAACrBVl58QEDBuj333+XJL3zzjv697//raZNm+qpp55Ss2bNNGjQIL377rt5xvC0lO/vp1N8kT4AAEWaYdi8vqHwvFUnpWqrL9IHAKBIo07KYmlPox07dujaa6+VJL3xxhuaNGmSBg0alH28WbNmeuGFFzRw4MBcY3hayvfOWo97J2EAAAAf8VaddHt0f6/kCwAAAo+ljUYlSpTQsWPHVLVqVe3fv1/Nmzd3O96iRQulpqbmGcPTUr50uQYA4PJcKhpPuIor6iQAAKxDnZTF0uFpnTp10tSpUyVJ8fHx+vTTT92Of/zxx6pZs6YVqQEAAFiKOgkAAFjN0p5GEyZMUKtWrRQfH6+mTZvqlVde0YoVK1S3bl1t27ZNP/zwg+bNm2dligAABCxWBfFv1EkAAFiHOimLpT2NKlWqpE2bNqlly5ZauHChDMPQ+vXrtXjxYl111VVavXq1OnfubGWKAAAAlqBOAgAAVrO0p5EklSpVSuPHj9f48eOtTgUAgGKlqKzaUZxRJwEAYA3qpCyW9jQCAAAAAACAf7K8pxEAALAGY/UBAAA8o07KQk8jAAAAAAAA5ECjEQAAxZRh2Ly+AQAAFEX+WidNmTJF1apVU1hYmFq0aKH169fnef7EiRNVu3ZthYeH6+qrr9bw4cN17ty5fF+PRiMAAAAAAAA/N2fOHCUmJmr06NHauHGjGjVqpI4dO+rIkSMez581a5ZGjhyp0aNHa8uWLfrvf/+rOXPm6Mknn8z3NQNyTiOjTCnTYzqjzX+rMkqY+wTWWcrUcJKkqLg65gZcs9nceACAQmOsPvyZzW43NZ5xIcPUeJJkP2NuTGeZUFPjSVJmmPn/zjMc5sbMDDU/x0yHufFc5v9qlOmFmK4Qc+MZXvi26DI5pivEMDegvHPfKHr8sU569dVXNWjQIA0YMECSNG3aNH311Vd69913NXLkyBznr1mzRq1atdLdd98tSapWrZp69+6tdevW5fua9DQCAAAAAADwY+fPn1dKSooSEhKy9wUFBSkhIUFr1671+JobbrhBKSkp2UPYdu3apa+//lqdO3fO93VpQwUAoJgyzH84CwAAEBB8USc5nU45nU63fQ6HQw5Hzu6Sx44dU2ZmpipUqOC2v0KFCtq6davH+HfffbeOHTumG2+8UYZhKCMjQ4MHDy7Q8DR6GgEAUEy5ZPP6BgAAUBT5ok5KTk5WdHS025acnGzaPaxYsULjxo3TG2+8oY0bN2ru3Ln66quv9Nxzz+U7Bj2NAAAAAAAAfCwpKUmJiYlu+zz1MpKkcuXKyW636/Dhw277Dx8+rIoVK3p8zTPPPKN77rlH9913nySpYcOGSk9P1/3336+nnnpKQUGX70dETyMAAIopf11KFgAAwGq+qJMcDoeioqLcttwajUJDQxUXF6elS5dm73O5XFq6dKlatmzp8TVnzpzJ0TBk//8LTRj5HH9HTyMAAAAAAAA/l5iYqH79+qlp06Zq3ry5Jk6cqPT09OzV1Pr27avKlStnD3Hr2rWrXn31VTVp0kQtWrTQzp079cwzz6hr167ZjUeXQ6MRAADFlD8uJQsAAOAP/LFO6tmzp44ePapRo0bp0KFDaty4sRYuXJg9OfbevXvdehY9/fTTstlsevrpp7V//36VL19eXbt21QsvvJDva9JoBAAAAAAAUAQMHTpUQ4cO9XhsxYoVbj8HBwdr9OjRGj16dKGvR6MRAADFlC+WkgUAACiKqJOyMBE2AAAAAAAAcrC00eihhx7S999/f0UxnE6nTp486ba5XBkmZQgAQOBi9TT/5rU6ycg0KUMAAAIXdVIWSxuNpkyZorZt26pWrVqaMGGCDh06VOAYycnJio6Odtt2HVvjhWwBAAB8x1t1Uqq2eiFbAAAQiCwfnrZ48WJ17txZL7/8sqpUqaJu3brpyy+/lMvlytfrk5KSlJaW5rZdU+4GL2cNAEDRxxM0/+eNOqm66ng5awAAij7qpCyWNxo1bNhQEydO1IEDB/Thhx/K6XSqe/fuuvrqq/XUU09p586deb7e4XAoKirKbQsKYn5vAABQ9HmlTrLZfZQ9AAAo6ixvNLooJCREd911lxYuXKhdu3Zp0KBBmjlzpmrXrm11agAABCSXYfP6BnNQJwEA4FvUSVn8ptHoUlWqVNGYMWOUmpqqhQsXWp0OAACA36BOAgAAvmLpOK6qVavKbs+9i7TNZlOHDh18mBEAAMWHYVidAfJCnQQAgHWok7JY2miUmppq5eUBAAD8FnUSAACwGjNGAwBQTBWVVTsAAAB8jTopi1/OaQQAAAAAAABr0dMIAIBiiidoAAAAnlEnZaGnEQAAAAAAAHKgpxEAAMUUi4IAAAB4Rp2UJSAbjTLKljA9pjPa/E5ZGWHmxnM5zI0nSX82MPe9rPB7jKnxJCnj8BHTYwIAAGvZgswdFmCz202NJ0lBZ50mRzS/hs1wmD+8IjPU3JiZXqhhXaHmxvNGjl657xCz45n/tdkwO8dgL3y1D3F5IabJedq9kCPgQUA2GgEAgMtjrD4AAIBn1ElZmNMIAAAAAAAAOdDTCACA4orB+gAAAJ5RJ0mipxEAAAAAAAA8oKcRAADFFGP1AQAAPKNOykJPIwAAAAAAAORATyMAAIopg7H6AAAAHlEnZaGnEQAAAAAAAHKgpxEAAMUUY/UBAAA8o07KYnlPo8mTJ6tv37766KOPJEkffPCB6tWrpzp16ujJJ59URkaGxRkCAABYgzoJAABYydJGo+eff15PPvmkzpw5o+HDh2vChAkaPny4+vTpo379+umdd97Rc889l2cMp9OpkydPum0uFwUUAACXZdi8vxXAypUr1bVrV1WqVEk2m02ff/65e7qGoVGjRik2Nlbh4eFKSEjQjh07THxD/IvX6iQj00d3AABAEeZndZJVLG00mj59uqZPn65PP/1UCxcu1FNPPaVJkybpqaeeUlJSkt58803NmjUrzxjJycmKjo5223bv+85HdwAAAMySnp6uRo0aacqUKR6Pv/jii3r99dc1bdo0rVu3ThEREerYsaPOnTvn40x9w1t1Uqq2+ugOAABAUWdpo9GBAwfUtGlTSVKjRo0UFBSkxo0bZx+//vrrdeDAgTxjJCUlKS0tzW2rdnW8N9MGACAgGIb3t4Lo1KmTnn/+ed1+++0ecjU0ceJEPf300+rWrZuuu+46vf/++zpw4ECOHkmBwlt1UnXV8WbaAAAEBH+rk6xiaaNRxYoV9dtvv0mSduzYoczMzOyfJenXX39VTExMnjEcDoeioqLctqAg5vcGACCQpKam6tChQ0pISMjeFx0drRYtWmjt2rUWZuY9XquTbHav5g0AAAKHpa0rffr0Ud++fdWtWzctXbpUjz/+uB577DH9+eefstlseuGFF9SjRw8rUwQAIHD54AmX0+mU0+l02+dwOORwOAoU59ChQ5KkChUquO2vUKFC9rFAQ50EAICFikhPIG+ztNFo7NixCg8P19q1azVo0CCNHDlSjRo10uOPP64zZ86oa9eul53gEQAA+K/k5GSNHTvWbd/o0aM1ZswYaxIqQqiTAACA1SxtNAoKCtKTTz7ptq9Xr17q1auXRRkBAFB8GD5YtSMpKUmJiYlu+wray0jKGqolSYcPH1ZsbGz2/sOHD7vN8xNIqJMAALCOL+qkosDSOY0AAEBg8zSnTmEajapXr66KFStq6dKl2ftOnjypdevWqWXLlmamDAAAgP+PGaMBACiu/Gys/unTp7Vz587sn1NTU7V582aVKVNGVapU0bBhw/T888/r2muvVfXq1fXMM8+oUqVK6t69u3VJAwCAwORndZJVrrjR6Pz580pNTVWNGjUUHEwbFAAAKJwNGzaoXbt22T9fHNbWr18/TZ8+XY8//rjS09N1//3368SJE7rxxhu1cOFChYWFWZXyZVEnAQCAoqzQw9POnDmje++9VyVKlFD9+vW1d+9eSdJDDz2k8ePHm5YgAADwDsOweX0riLZt28owjBzb9OnTJUk2m03PPvusDh06pHPnzunbb79VrVq1vPDOXDnqJAAAijZ/q5OsUuhGo6SkJP30009asWKF2xO+hIQEzZkzx5TkAACAFxk+2Iop6iQAAIo46iRJVzA87fPPP9ecOXP0j3/8Qzbb/7WQ1a9fX7///rspyQEAABRF1EkAACAQFLrR6OjRo4qJicmxPz093a04ssL5UqHmx4wy/54ySpgbz2X+bSutprnNn1GNq5oaT5JCFh0xPSYAFA9Fo1t0UeTPdVKRYbebGy/I/Pfdlu40NV7wWZep8STpTHmT30dJmQVfADFP3qhhzc7R7HiSt+7b3NrdFeqFrhAhJn/OQ7yQY7D5/xbtJt+3PTjT1HiSFGxyzBAv5Ohb/L2WrmB4WtOmTfXVV19l/3yxAHrnnXdY+hYAABRr1EkAACAQFLqn0bhx49SpUyf99ttvysjI0KRJk/Tbb79pzZo1+u6778zMEQAAeEMRGUtfFFEnAQBQxFEnSbqCnkY33nijNm/erIyMDDVs2FCLFy9WTEyM1q5dq7i4ODNzBAAAKFKokwAAQCAodE8jSapRo4befvvtPM8ZP368Bg8erFKlSl3JpQAAgNl4guZV1EkAABRh1EmSrqCnUX6NGzdOx48f9/ZlAAAAihzqJAAA4M+uqKdRfhgGzXMAAPglg1VBrEadBACAn6JOkuSDnkYAAAAAAAAoerze0wgAAPgnOrkAAAB4Rp2UxfJGo4MHD2rq1KlatWqVDh48qKCgIF1zzTXq3r27+vfvL7vdbnWKAAAAlqBOAgAAVrJ0eNqGDRtUt25dff3117pw4YJ27NihuLg4RURE6LHHHlObNm106tQpK1MEACBwGT7YUGjUSQAAWIg6SZIPGo1at26t8PBwj8eGDRum4cOHa8OGDfr+++81ffp0bd++XR999JF27dqlM2fO6Omnn84zvtPp1MmTJ902V2aGN24FAADAVJbUSUamN24FAAAEIJtRyGU70tLStGTJEu3evVs2m03Vq1dXQkKCoqKi8h2jRIkS+uWXX3TNNddIklwul8LCwrRv3z5VqFBBS5YsUf/+/bV///5cY4wZM0Zjx45121elVoKq1r65MLeVqxM1zB/Jdz7/b1W+uELNjSdJmQ5zmz+vXmp+g17Ioh9NjwkAVlni+sRn16r6zktev8ae+0Z4/Rr+yJ/rpOqqqxq2+oW7MR8KyqUxrdDxSkaYGk+SFGFuzLO1Y0yNJ0knq4SYHjPTYW4879Sw/h1PKhq1uyvUC10hQlwmx/NCjsEm5yjJbvJ924PNfwAQbHLMEC/k+NOtz5keMzfUSVkK1RLy4YcfaujQoTp58qTb/ujoaE2bNk09e/bMV5yYmBgdPHgwuxg6fPiwMjIysguqa6+9VsePH88zRlJSkhITE932de49Jb+3AgAAYCp/r5Nuj+6fzzsBAADFXYGHp23cuFEDBgxQ9+7dtWnTJp09e1ZnzpzRhg0b1LVrV91zzz366aef8hWre/fuGjx4sBYuXKjly5erT58+io+Pz+6mvW3bNlWuXDnPGA6HQ1FRUW5bkN3y+b0BAPB7NsP7W3FTJOokG5NnAwBwOdRJWQrcuvKf//xH3bt31/Tp0932X3/99Xr//fd15swZTZo0Se++++5lYz3//PM6ePCgunbtqszMTLVs2VIffvhh9nGbzabk5OSCpggAAGAJ6iQAABBICtxotHr1ar3xxhu5Hh88eLAefPDBfMUqWbKk5syZo3PnzikjI0MlS5Z0O37zzebOSwQAAC5RRJ5wFSXUSQAABAjqJEmFaDQ6cOCAatWqlevxWrVq5TkhoydhYWEFTQMAAMDvUCcBAIBAUuBGozNnzuRZvDgcDp07d+6KkgIAAD5g2KzOIOBQJwEAECCokyQVcvW0RYsWKTo62uOxEydOXEk+AAAARRp1EgAACBSFajTq169fnsdtNlrkAADwe4zV9wrqJAAAAgB1kqRCNBq5XC5v5AEAAFDkUScBAIBAEuTtC3Tp0kUHDx709mUAAEBBGT7YkCfqJAAA/BR1kiQfNBqtXLlSZ8+e9fZlAAAAihzqJAAA4M8KNaeRv3NG202PeSHS9JDKNHkFXZfD/KbKTJNj/lk3xNR4knTVrhqmx8zY8bvpMQHA7xSRJ1wopsye+ynIC89Kg8zN0X42w9R4khSUaX65fyHU3PvOdJgazisxXaHmxpPMr7MlyRVqbkzDYf6QW1uouTHtoZmmxpMke7D5MYNNjhkaYn6OYcHm/j8oLPiCqfF8jjpJkg96GgEAAAAAAKDoCcieRgAAIB8MVvECAADwiDpJEj2NAAAAAAAA4AE9jQAAKKZsjNUHAADwiDopi9d7GqWnpys8PNzblwEAAChyqJMAAIA/83pPo4iIiDyXkj1//rw+//xzrV27VocOHZIkVaxYUTfccIO6deum0FAvLFUAAABYFcQPUCcBAOCnqJMkWTyn0c6dO1W3bl3169dPmzZtksvlksvl0qZNm9S3b1/Vr19fO3futDJFAAAAS1AnAQAAq1k6p9EDDzyghg0batOmTYqKinI7dvLkSfXt21dDhgzRokWLLMoQAADAGtRJAADAapb2NFq9erWef/75HIWQJEVFRem5557T999/b0FmAAAA1qJOAgAAfzdlyhRVq1ZNYWFhatGihdavX5/n+SdOnNCQIUMUGxsrh8OhWrVq6euvv8739SxtNCpVqpR2796d6/Hdu3erVKlSPssHAIDixGZ4f0PhUScBAGAdf6yT5syZo8TERI0ePVobN25Uo0aN1LFjRx05csTj+efPn1eHDh20e/duffrpp9q2bZvefvttVa5cOd/XtHR42n333ae+ffvqmWeeUfv27VWhQgVJ0uHDh7V06VI9//zzeuihh/KM4XQ65XQ63fa5MjMUZLf01gAAAK6I1+okI1NBNrvX8gYAAN7x6quvatCgQRowYIAkadq0afrqq6/07rvvauTIkTnOf/fdd3X8+HGtWbNGISEhkqRq1aoV6Jpeb1l58sknVaZMGY/Hnn32WUVEROill17So48+KpvNJkkyDEMVK1bUE088occffzzP+MnJyRo7dqzbvkoNb9ZVjTqacwMAAAQqw2Z1BsWeFXVSddVVDdU35wYAAAhUflYnnT9/XikpKUpKSsreFxQUpISEBK1du9bjaxYsWKCWLVtqyJAhmj9/vsqXL6+7775bTzzxhOz2/D1AshmGUajO48nJyapQoYIGDhzotv/dd9/V0aNH9cQTTxQoXmpqqttSstWrV8/X6zw9QWs/eJrpPY1OVjf/A5MRbm48l8P8cQCZJseM/N38EZFXfXXY9JgZO343PSYA5McS1yc+u9Y1k171+jV2PZLo9Wv4I3+uk26P7l8kehoFlShhbrzIkqbGkyRFmJvj+atKmxpPktJqhpke01nK3Lo402FqOK/EdIWaG08yv86WJFeouTENh8vUeJJkCzU3pj0009R4kmQPNj9msMkxQ0PMzzEsOMPkeBdMjSdJK9q/bHrM3PiiTtoyeEiOv9MOh0MOR87/iR04cECVK1fWmjVr1LJly+z9jz/+uL777jutW7cux2vq1Kmj3bt3q0+fPnrwwQe1c+dOPfjgg3r44Yc1evTofOVY6G/wb775purUqZNjf/369TVt2rQCx6tevbpatmypli1bZhdC+/bty1Fs/Z3D4VBUVJTbxtA0AADywfDBVkz5dZ1UBBqMAACwnA/qpOTkZEVHR7ttycnJpt2Cy+VSTEyM3nrrLcXFxalnz5566qmnClSLFLrR6NChQ4qNjc2xv3z58jp48GBhw7o5fvy4ZsyYYUosAAAAX6FOAgAAl5OUlKS0tDS37dLhZ5cqV66c7Ha7Dh92H2lz+PBhVaxY0eNrYmNjVatWLbehaHXr1tWhQ4d0/vz5fOVY6C45V199tVavXp2je/Tq1atVqVKlfMVYsGBBnsd37dpV2PQAAMDlFOOeQN5GnQQAQBHngzopt6FonoSGhiouLk5Lly5V9+7dJWX1JFq6dKmGDh3q8TWtWrXSrFmz5HK5FBSU1Wdo+/btio2NVWho/sbdFrrRaNCgQRo2bJguXLigm266SZK0dOlSPf7443r00UfzFaN79+6y2WzKa1qli5M+AgAAFBXUSQAAwGyJiYnq16+fmjZtqubNm2vixIlKT0/PXk2tb9++qly5cvYQtwceeECTJ0/WI488ooceekg7duzQuHHj9PDDD+f7moVuNBoxYoT+/PNPPfjgg9ndmsLCwvTEE0/k2p3q72JjY/XGG2+oW7duHo9v3rxZcXFxhU0RAADkwUZPI6+hTgIAoGjzxzqpZ8+eOnr0qEaNGqVDhw6pcePGWrhwoSpUqCBJ2rt3b3aPIimr5/OiRYs0fPhwXXfddapcubIeeeSRAi3IUehGI5vNpgkTJuiZZ57Rli1bFB4ermuvvTbfXaskKS4uTikpKbkWQ5d7ugYAAK4Af2K9hjoJAIAizk//xA4dOjTX4WgrVqzIsa9ly5b64YcfCn29K15mrGTJkmrWrFmhXjtixAilp6fnerxmzZpavnx5YVMDAACwFHUSAAAoygrUaHTHHXfk+9y5c+de9pzWrVvneTwiIkLx8fH5viYAACgAP32CVlRRJwEAEECokyQVsNEoOjraW3kAAIBiLjMzU2PGjNGHH36oQ4cOqVKlSurfv7+efvrpIjHhM3USAAAINAVqNHrvvfe8lQcAAPAxf5vgccKECZo6dapmzJih+vXra8OGDRowYICio6MLtMqHVaiTAAAIHP5WJ1nliuc08kfno8x/GnmhpOkh5XKY+yl0hbpMjSdJhsPcmKdqmf8vL+2P8qbHjNjxu+kxAQB5W7Nmjbp166YuXbpIkqpVq6bZs2dr/fr1FmcGK9guWf3FFGbH80JM+5kMU+NJUvA500PqTP7nc8+XTJPjSZIr1Nx4mSbX7ZLkCjU/ptm1u80L3y/soZmmxgsJNf/fTZjjgvkxg83NMyzY/BzDQ8yNWcILOcL3Ct1o1KRJE49dxW02m8LCwlSzZk31799f7dq1u6IEAQCAlxj+NeTrhhtu0FtvvaXt27erVq1a+umnn7Rq1Sq9+uqrVqdWYNRJAAAUcX5WJ1ml0I9HbrnlFu3atUsRERFq166d2rVrp5IlS+r3339Xs2bNdPDgQSUkJGj+/Plm5gsAAIoQp9OpkydPum1Op9PjuSNHjlSvXr1Up04dhYSEqEmTJho2bJj69Onj46yvHHUSAAAIBIXuaXTs2DE9+uijeuaZZ9z2P//889qzZ48WL16s0aNH67nnnlO3bt2uOFEAAGAyH4zVT05O1tixY932jR49WmPGjMlx7scff6yZM2dq1qxZql+/vjZv3qxhw4apUqVK6tevn/eTNRF1EgAARRxzGkm6gp5GH3/8sXr37p1jf69evfTxxx9Lknr37q1t27YVPjsAAFCkJSUlKS0tzW1LSkryeO6IESOyexs1bNhQ99xzj4YPH67k5GQfZ33lqJMAAEAgKHRPo7CwMK1Zs0Y1a9Z0279mzRqFhYVJklwuV/Z/AwAA/+KLVUEcDoccjvzNcnvmzBkF/W1iYbvdLpfL/IlYvY06CQCAoo3V07IUutHooYce0uDBg5WSkqJmzZpJkn788Ue98847evLJJyVJixYtUuPGjQud3OHDh/Xmm29q1KhRhY4BAACKhq5du+qFF15QlSpVVL9+fW3atEmvvvqqBg4caHVqBUadBAAAAoHNMIxCt5/NnDlTkydPzu5aXbt2bT300EO6++67JUlnz57NXiWkMH766Sddf/31ysws2LKMTYa8Vqjr5eVUVdNDymXy0p0uLyyJafqynefNX+620jLzZ7WP+PQH02MCQH4scX3is2tdm2z+38u/25E0PN/nnjp1Ss8884zmzZunI0eOqFKlSurdu7dGjRql0FCT18/2AX+tkzoE3Vmo6/mavWRJU+PZIs2NJ0mKKGFquMxSEabGk6STtcy/75NVza29MvPXGbFAXCb/LyPT5Lpdklyh5sc0vXb3wvcLe2jB/p91OSGh5i5lL0lhDvOXig8LNjfPMC8sZx8eYm7MEl7I8bMb3jA9Zm78rU6ySqF7GklSnz598lzRJDw8XLNnz9Ztt92miIicfwR//vnnPOMzzh8AgOIjMjJSEydO1MSJE61OxRTUSQAAoKi7okaj/Pj3v/+tFi1a6JprrslxrHHjxrLZbPLU2enifpvN/F4kAACAsfr+gDoJAAD/RJ2UxeuNRnmNfitTpoxefPFFtW/f3uPxX3/9VV27ds0zvtPplNPpdNvnysxQkN3rtwYAAHBFLKmTjEwF2ewFTxYAABQ7lrasxMXF6cCBA6pa1fOEQSdOnMizmJKk5ORkjR071m1fhaY3K7b5LablCQBAQOIJml/zVp1UXXVVQ/VNyxMAgIBEnSRJMn9W4gIYPHiwqlWrluvxKlWq6L333sszRlJSktLS0ty2CnEJJmcKAADgW96qk6qrjsmZAgCAQGVpT6Pbb789z+OlS5dWv3798jzH4XDI4XBfcoGhaQAA5ANP0Pya1+okhqYBAHB51EmSLO5pdDn79u3TwIEDrU4DAADA71AnAQAAb/N6o1HVqlUVEhJSqNceP35cM2bMMDkjAAAgZa0K4u0NeaNOAgDAP1EnZSnwOK5vv/1WCQm5zxnkcrk0btw4Pf3005KkX375JddzFyxYkOe1du3aVdD0AAAALEOdBAAAAkmBG406d+6s+++/Xy+++KJKlCjhduyXX35Rv379dOjQoexiKC/du3eXzWbLc+UPm81W0BQBAAAsQZ0EAAACSYGHp33//fdaunSpGjVqpNWrV0vKemr2/PPPKy4uTrVr187zqdmlYmNjNXfuXLlcLo/bxo0bC5oeAACAZaiTAABAIClwo1GLFi20adMmdenSRe3atdPQoUPVvHlz/ec//9Hs2bM1a9YslS5dOl+x4uLilJKSkuvxyz1dAwAAV8DwwVbMUCcBABAgqJMkFWJ4miSFhYXptdde05EjR/TGG28oIiJCGzZsUO3atQsUZ8SIEUpPT8/1eM2aNbV8+fLCpAgAAGAJ6iQAABAoCrV62u+//642bdpo2bJlmjZtmho0aKC2bdtq/vz5BYrTunVr3XLLLbkej4iIUHx8fGFSBAAAl8GqIN5BnQQAQNFHnZSlwI1GkydPVqNGjRQTE6P//e9/uv/++7V69WoNGzZMvXr10j333KMTJ054IVUAAAD/Rp0EAAACSYGHp40aNUpvvvmm+vTpk70vKChITzzxhG699Vb169dP9evX1/79+01NtCDOR5ofMzPcZXpMI9TkpsWwTHPjSbKHmhszpFSGqfEk6a/a5v/CI+MamBrPlZK/SU8BwKeKyBOuoqQo1EleYStU5/W82e3mxgvyQo4mr15nyzS/lgs+Y34Naz9n7u/mgjdqd4e5/4NzmV23SzIc5v9ubKHmxjT7u4AkhYSa+30gzHHB1HiSFBF63vSYJUOd5sYLMT/HMLu572WE3fwcfYo6SVIhGo1+/fVXxcbGejxWv359rVu3TuPGjbvixAAAAIoa6iQAABBICvzI5d5771VaWlr2z+PHj3frZn3ixAnNnj3blOQAAIAXsSqI6aiTAAAIENRJkgrRaLRo0SI5nf/XtW7cuHE6fvx49s8ZGRnatm2bOdkBAAAUIdRJAAAgkBR4eJphGHn+DAAAioaismpHUUKdBABAYKBOyuKFGQEBAAAAAABQ1BW4p5HNZpPtbytF/P1nAABQBPAEzXTUSQAABAjqJEmFHJ7Wv39/ORwOSdK5c+c0ePBgRURESJLbOP78+uOPP1SqVCmVLFnSbf+FCxe0du1atWnTpsAxAQAAfI06CQAABJICNxr169fP7ed//etfOc7p27dvvmIdPHhQ3bp1U0pKimw2m+6++2698cYb2UXR8ePH1a5dO2VmZhY0TQAAcBmM1TcfdRIAAIGBOilLgRuN3nvvPdMuPnLkSAUFBWndunU6ceKERo4cqXbt2mnx4sUqXbq0JCaQBAAARQd1EgAACCSWToT97bff6vXXX1fTpk2VkJCg1atXKzY2VjfddFP28rTMAwAAgJcYPthQaNRJAABYiDpJksWNRmlpadlPyiTJ4XBo7ty5qlatmtq1a6cjR45cNobT6dTJkyfdNldGhjfTBgAA8Dqv1UkGw9kAAED+WNpodM011+jnn3922xccHKxPPvlE11xzjW699dbLxkhOTlZ0dLTbduyHb72VMgAAgYMnaH7NW3VSqrZ6K2UAAAIHdZIkixuNOnXqpLfeeivH/osFUePGjS87Vj8pKUlpaWluW7l/JHgrZQAAAJ/wVp1UXXW8lTIAAAgwBZ4I20wvvPCCzpw54/FYcHCwPvvsM+3fvz/PGA6HI3tZ24uCgi29LQAAigRWBfFvXquTbHbTcgQAIFBRJ2WxtKdRcHCwoqKicj1+8OBBjR071ocZAQBQjNDt2q9RJwEAYCHqJEkWNxpdzvHjxzVjxgyr0wAAAPA71EkAAMDbLB3HtWDBgjyP79q1y0eZAABQDBWRJ1zFFXUSAAAWok6SZHGjUffu3WWz2fKcxNFms/kwIwAAAP9AnQQAAKxm6fC02NhYzZ07Vy6Xy+O2ceNGK9MDACCg2Qzvbyg86iQAAKxDnZTF0kajuLg4paSk5Hr8ck/XAAAAAhV1EgAAsJqlw9NGjBih9PT0XI/XrFlTy5cv92FGAAAUI7Q3+DXqJAAALESdJMniRqPWrVvneTwiIkLx8fE+ygYAAMB/UCcBAACrWdpoBAAArFNUxtIDAAD4GnVSloBsNLoQaX5MV7jL9Ji20ExT49kd5saTpNDQDFPjhTsumBpPko5f6zQ/5n5zP0Rld0abGk+SMtPSTI8JAEBh2Ox2LwQ1eWU4b6w0Zzd5elAv5Bh81vwa1u409/dt2M3/ZuYKNTem4fDGdwEv/G5M/n4RYvJ3AUkKM/n7QEToeVPjSVLJUPO/X0SFmBszOvSsqfEkKTL4nKnxStrNfx/hewHZaAQAAPKBJ2gAAACeUSdJsnj1NAAAAAAAAPgnehoBAFBc8QQNAADAM+okSfQ0AgAAAAAAgAf0NAIAoJjywrTAAAAAAYE6KQs9jQAAAAAAAJCD5T2N/vzzT/38889q1KiRypQpo2PHjum///2vnE6n7rzzTtWtW9fqFAEACEyM1fd71EkAAFiEOkmSxY1G69ev180336yTJ0+qVKlSWrJkie68804FBwfL5XJp/PjxWrVqla6//nor0wQAAPA56iQAAGA1S4enPfXUU7rzzjuVlpamJ598Ut27d1f79u21fft27dy5U7169dJzzz1nZYoAAAQsm+H9DYVHnQQAgHWok7JY2miUkpKixMRERUZG6pFHHtGBAwc0aNCg7ONDhw7Vjz/+aGGGAADAl/bv369//etfKlu2rMLDw9WwYUNt2LDB6rQsQZ0EAACsZunwtPPnzys8PFySFBISohIlSqhcuXLZx8uVK6c///wzzxhOp1NOp9NtnysjQ0HBlk/XBACAf/OzJ1x//fWXWrVqpXbt2umbb75R+fLltWPHDpUuXdrq1CzhtTrJyFSQzW5+wgAABBI/q5OsYmlPo6uvvlq7du3K/vmjjz5SbGxs9s8HDx50K448SU5OVnR0tNv213ffei1nAADgHRMmTNDVV1+t9957T82bN1f16tV18803q0aNGlanZglv1Ump2uq1nAEAQGCxtNGoV69eOnLkSPbPXbp0yX6iJkkLFixQ8+bN84yRlJSktLQ0t610fILXcgYAIGAY3t+cTqdOnjzptv2958tFCxYsUNOmTXXnnXcqJiZGTZo00dtvv+2lm/d/3qqTqquO13IGACBg+KBOKgosHcM1evToPI8/9dRTstvz7j7tcDjkcDjc9jE0DQAA/5CcnKyxY8e67Rs9erTGjBmT49xdu3Zp6tSpSkxM1JNPPqkff/xRDz/8sEJDQ9WvXz8fZew/vFYnMTQNAADkk6U9jS7nzz//1AMPPGB1GgAABCRfrAriqadLUlKSx3xcLpeuv/56jRs3Tk2aNNH999+vQYMGadq0aT5+Z4oG6iQAALyH1dOy+HWj0fHjxzVjxgyr0wAAAIXkcDgUFRXltv2958tFsbGxqlevntu+unXrau/evb5ItcihTgIAAN5m6TiuBQsW5Hn80skfAQCAyfzsCVerVq20bds2t33bt29X1apVLcrIWtRJAABYyM/qJKtY2mjUvXt32Ww2GUbuvw2bzebDjAAAgFWGDx+uG264QePGjdNdd92l9evX66233tJbb71ldWqWoE4CAABWs3R4WmxsrObOnSuXy+Vx27hxo5XpAQAQ0PxtrH6zZs00b948zZ49Ww0aNNBzzz2niRMnqk+fPt55A/wcdRIAANbxtzrJKpY2GsXFxSklJSXX45d7ugYAAALLrbfeqv/97386d+6ctmzZokGDBlmdkmWokwAAgNUsbTQaMWKEbrjhhlyP16xZU8uXL/dhRgAAFCOGDzYUGnUSAAAW8tM6acqUKapWrZrCwsLUokULrV+/Pl+v++ijj2Sz2dS9e/cCXc/SOY1at26d5/GIiAjFx8f7KBsAAAD/QZ0EAAAuNWfOHCUmJmratGlq0aKFJk6cqI4dO2rbtm2KiYnJ9XW7d+/WY489dtnawhNLexoBAADrMFYfAADAM3+sk1599VUNGjRIAwYMUL169TRt2jSVKFFC7777bq6vyczMVJ8+fTR27Fhdc801Bb6mpT2NvOVClMv0mEFhGabHDHZkmhovzHHB1HiSFB5qbsyIUKep8STp6mtOmB7zt/01TI0X1cTceJIUtIIJUAEA/sEWZP4qbja73dyAXsjRMHn1OiPI/Oe59rNeqGHPmfsVwn7O/N/NhdLm1tm2UPO/X9hDzc1RkkJCzf19e+P7RUToeVPjlfTC94uoEPNjRoeeNTVeZPA5U+NJUungM6bGKxN82tR4gcjpdMrpdP+8ORwOORyOHOeeP39eKSkpSkpKyt4XFBSkhIQErV27NtdrPPvss4qJidG9996r77//vsA50tMIAIDiyk/H6gMAAFjOB3VScnKyoqOj3bbk5GSP6Rw7dkyZmZmqUKGC2/4KFSro0KFDHl+zatUq/fe//9Xbb79d6LchIHsaAQAAAAAA+LOkpCQlJia67fPUy6gwTp06pXvuuUdvv/22ypUrV+g4NBoBAFBc0RMIAADAMx/USbkNRfOkXLlystvtOnz4sNv+w4cPq2LFijnO//3337V792517do1e5/LlTXUNjg4WNu2bVONGpefRoXhaQAAAAAAAH4sNDRUcXFxWrp0afY+l8ulpUuXqmXLljnOr1Onjv73v/9p8+bN2dttt92mdu3aafPmzbr66qvzdV16GgEAUEyxuhkAAIBn/lgnJSYmql+/fmratKmaN2+uiRMnKj09XQMGDJAk9e3bV5UrV1ZycrLCwsLUoEEDt9eXKlVKknLszwuNRgAAAAAAAH6uZ8+eOnr0qEaNGqVDhw6pcePGWrhwYfbk2Hv37lWQyStx+mWj0TXXXKNFixbp2muvtToVAAAClx8+QcPlUScBAOADflonDR06VEOHDvV4bMWKFXm+dvr06QW+nqWNRq+//rrH/Xv37tV7772XPZnTww8/7Mu0AAAALEedBAAArGZpo9GwYcNUuXJlBQe7p+FyufT+++8rJCRENpuNYggAAC+wGX76CA2SqJMAALASdVIWSxuN7r//fq1bt06zZs1S3bp1s/eHhIRo8eLFqlevnoXZAQAAWIc6CQAAWM3cGZIKaNq0aRo1apQ6duyoyZMnFyqG0+nUyZMn3TbjQobJmQIAEIAMH2woNG/VSS4j0+RMAQAIQNRJkixuNJKk22+/XWvXrtW8efPUqVMnHTp0qECvT05OVnR0tNt2YslSL2ULAEDgsBne33BlvFEnpWqrl7IFACBwUCdlsbzRSJIqV66sb7/9Vm3atFGTJk1kFGDsYFJSktLS0ty2Uh3aezFbAAAA3zG7TqquOl7MFgAABBJL5zS6lM1mU1JSkm6++WatWrVKsbGx+Xqdw+GQw+FwjxXiN7cFAID/KiJPuGBunRRks3sjRQAAAgt1kiQ/6Wl0qbi4OD3yyCMqXbq09u3bp4EDB1qdEgAAgF+gTgIAAL7kd41Glzp+/LhmzJhhdRoAAAQkxuoXbdRJAAB4D3VSFkvHcS1YsCDP47t27fJRJgAAAP6FOgkAAFjN0kaj7t27y2az5Tmho81m82FGAAAUI0XkCVdxRZ0EAICFqJMkWTw8LTY2VnPnzpXL5fK4bdy40cr0AAAALEOdBAAArGZpo1FcXJxSUlJyPX65p2sAAKDwGKvv36iTAACwDnVSFkuHp40YMULp6em5Hq9Zs6aWL1/uw4wAAAD8A3USAACwmqWNRq1bt87zeEREhOLj432UDQAAxUwRecJVXFEnAQBgIeokSRYPTwMAAAAAAIB/srSnkbcYkRmmx3SUuGB6zLBQc2OWMDmeJJUMdZoaL8rkeJJUOvSM6TFttU6bGu/PAyVNjSdJsbuuMjVext4/TI0HwP8VlbH0KALsdvNjBpm8MlyQF3K0m52jueGyYpq/wl7wOXPj2U2OJ0k2l7nx7KGZ5gaUFBJq/neWMIe53wciQs+bGk/ywveLEPO/X0SHnjU9ZqTJ/3BKB5v/HahMsLnfgcoE5z7EuiigTspCTyMAAAAAAADkEJA9jQAAQD6w8hYAAIBn1EmS6GkEAAAAAAAAD+hpBABAMcVYfQAAAM+ok7LQ0wgAAAAAAAA50NMIAIDiiidoAAAAnlEnSfKzRiPDMLRixQrt3LlTsbGx6tixo0JCQqxOCwAAwHLUSQAAwNcsbTTq3LmzZs+erejoaB0/flydO3fW+vXrVa5cOf3555+qVauWVq5cqfLly1uZJgAAAcnmsjoD5IU6CQAA61AnZbF0TqOFCxfK6XRKkp5++mmdOnVKv//+u44cOaI9e/YoIiJCo0aNsjJFAAAAS1AnAQAAq/nNRNjLli1TcnKyqlevLkm66qqrNGHCBC1atMjizAAACFCGDzaYgjoJAAAfo06S5AdzGtlsNknSX3/9pRo1argdq1mzpg4cOJDn651OZ/ZTuIuMCxmyhVh+awAAAFfEG3WSy8hUkM1ubqIAACAgWd7TqH///rrjjjt04cIFpaamuh07dOiQSpUqlefrk5OTFR0d7balfbXcixkDABAYbIb3N1wZb9RJqdrqxYwBAAgM1ElZLG006tevn2JiYhQdHa1u3brpzJkzbsc/++wzNW7cOM8YSUlJSktLc9uiu7TzYtYAAADe5606qbrqeDFrAAAQSCwdw/Xee+/leXz06NGy2/PuPu1wOORwONz2MTQNAIB8MIrII65iylt1EkPTAADIB+okSX4wPC0vx48f14MPPmh1GgAAAH6HOgkAAHib3zcazZgxw+o0AAAISIzVL9qokwAA8B7qpCyWjuNasGBBnsd37drlo0wAAAD8C3USAACwmqWNRt27d5fNZpORx1jBi0vNAgAAkxWRJ1zFFXUSAAAWok6SZPHwtNjYWM2dO1cul8vjtnHjRivTAwAAsAx1EgAAsJqljUZxcXFKSUnJ9fjlnq4BAIDCY6y+f6NOAgDAOtRJWSxtNBoxYoRuuOGGXI/XrFlTy5cv92FGAADAH4wfP142m03Dhg2zOhXLUCcBAACrWTqnUevWrfM8HhERofj4eB9lAwBAMeOnvVR+/PFHvfnmm7ruuuusTsVS1EkAAFjIT+skX7O0pxEAAMClTp8+rT59+ujtt99W6dKlrU4HAACgWLO0p5G3hEaeNz1mRJj5MUs6nKbGiwwxN54kRYWeMzVedMhZU+NJUikvxLyp2nZT4y2+trGp8SQpqlElU+M59v5hajwA/s8XY+mdTqecTve/Tw6HQw6Hw+P5Q4YMUZcuXZSQkKDnn3/e+wnCHN5YxS3I5GebQV7I0eT7Nsy+Z0mGF343wWdcpsazn7ObGk+SbE5z38uQ0AxT40lSmOOC6TEjQs39zlIy1AvfL0z+zhIdav53gchgc78DSVLp4DOmxisTfNrUeFkx002NV9Z+ytR4vlZU5hzyNnoaAQAAr0lOTlZ0dLTblpyc7PHcjz76SBs3bsz1OAAAAHwrIHsaAQCAfPDBE7SkpCQlJia67fPUy2jfvn165JFHtGTJEoWFhXk/MQAAgLzQ00gSjUYAAMCL8hqKdqmUlBQdOXJE119/ffa+zMxMrVy5UpMnT5bT6ZTdbv4QFgAAAOSORiMAAIopfxqr3759e/3vf/9z2zdgwADVqVNHTzzxBA1GAADAp/ypTrISjUYAAMBykZGRatCggdu+iIgIlS1bNsd+AAAA+AaNRgAAFFcuHqEBAAB4RJ0kyeJGoz/++ENhYWEqV66cJOn777/XtGnTtHfvXlWtWlVDhgxRy5YtrUwRAABYZMWKFVanYCnqJAAAYLUgKy/+z3/+Uz/88IMkaf78+Wrbtq1Onz6tVq1a6cyZM4qPj9eXX35pZYoAAAQuwwcbCo06CQAAC1EnSbK4p9Gvv/6q+vXrS5KSk5M1btw4PfHEE9nHJ0+erFGjRunWW2+1KkUAAAIWEzz6N+okAACsQ52UxdKeRsHBwTp16pQkKTU1VZ06dXI73qlTJ23bts2K1AAAACxFnQQAAKxmaaNRfHy8Zs+eLUlq0qRJjrkLli9frsqVK+cZw+l06uTJk26b60KGt1IGACBwGIb3NxSa1+okI9NbKQMAEDiokyRZPDxt/Pjxat26tQ4cOKAbb7xRTz31lH788UfVrVtX27Zt05w5czRt2rQ8YyQnJ2vs2LFu+8rc2VZle97kzdQBAAC8ylt1UnXVVQ3V92bqAAAgQFja06hu3bpat26dzp8/rxdffFHp6emaOXOmxowZo507d+qjjz5S//7984yRlJSktLQ0t630HW18cwMAABRhNsP7GwrPW3VSddXxzQ0AAFCEUSdlsbSnkSTVqFFDs2fPlmEYOnLkiFwul8qVK6eQkJB8vd7hcMjhcLjtCwqx/LYAAACumFfqJJvdG6kCAIAAZGlPo0vZbDZVqFBBsbGx2YXQvn37NHDgQIszAwAgQLGUbJFBnQQAgI9RJ0nyo0YjT44fP64ZM2ZYnQYAAIDfoU4CAADeZuk4rgULFuR5fNeuXT7KBACA4sdWRFbtKK6okwAAsA51UhZLG426d+8um80mI49fhs1m82FGAAAA/oE6CQAAWM3S4WmxsbGaO3euXC6Xx23jxo1WpgcAQGBz+WBDoVEnAQBgIeokSRY3GsXFxSklJSXX45d7ugYAABCoqJMAAIDVLB2eNmLECKWnp+d6vGbNmlq+fLkPMwIAoPhgrL5/o04CAMA61ElZLG00at26dZ7HIyIiFB8f76NsAAAA/Ad1EgAAsJqljUYAAMBCPEADAADwjDpJUoA2GpWKOGt6zIhQp+kxo0yOGRVyztR4klQqxNz3slTIGVPjSVK5kFOmx6wf/oep8X68toqp8STpz/3lTI13dWptU+NJUuYv20yPCQDwP7YgL0yTaXZMb+Ro9up1XlgMz7CbHzQo09xvUnbzy2zZz5l73xkZ5n9+IiLPmx6zpOnfL8z/5USHmvv9IjLY/O9ApYPN/85SJvi0yfFyH75cWGXt5n6vKmM3/32E7wVkoxEAAMgHxuoDAAB4Rp0kyeLV0wAAAAAAAOCf6GkEAEAxZeMBGgAAgEfUSVnoaQQAAAAAAIAc6GkEAEBxxVh9AAAAz6iTJFnc0+iVV17Rnj17rEwBAADAL1EnAQAAq1naaDRixAjVqFFDHTp00Jw5c3T+vPnLTgIAAM9sLu9vKDzqJAAArEOdlMXyOY3eeecdRURE6J577lGlSpU0bNgw/fLLL1anBQAAYDnqJAAAcKkpU6aoWrVqCgsLU4sWLbR+/fpcz3377bfVunVrlS5dWqVLl1ZCQkKe53tieaNR586d9fnnn+uPP/7Q448/rkWLFqlRo0Zq3ry53n77bZ06dcrqFAEACEyG4f0NV4Q6CQAAi/hhnTRnzhwlJiZq9OjR2rhxoxo1aqSOHTvqyJEjHs9fsWKFevfureXLl2vt2rW6+uqrdfPNN2v//v35vqbljUYXxcTE6PHHH9eWLVu0YsUK1atXT8OHD1dsbKzVqQEAAFiKOgkAALz66qsaNGiQBgwYoHr16mnatGkqUaKE3n33XY/nz5w5Uw8++KAaN26sOnXq6J133pHL5dLSpUvzfU1LV0+z2Wwe97du3VqtW7fW66+/rjlz5uQZw+l0yul0uu1znc9QUCgLwwEAkCc6Avk1r9VJRqaCbHbT8gQAICD5oE7y9Hfa4XDI4XDkOPf8+fNKSUlRUlJS9r6goCAlJCRo7dq1+bremTNndOHCBZUpUybfOVra08i4THesqKgoDRo0KM9zkpOTFR0d7bYd/Dh/bxgAAIC/8ladlKqtZqYJAAAKydPf6eTkZI/nHjt2TJmZmapQoYLb/goVKujQoUP5ut4TTzyhSpUqKSEhId85Wtpo5HK5FBMTc0UxkpKSlJaW5rbF3tXSpAwBAAhcNsPw+obC81adVF11TMoQAIDA5Ys6ydPf6Ut7Eplp/Pjx+uijjzRv3jyFhYXl+3V+M6eRJ/v27dPAgQPzPMfhcCgqKsptY2gaAAAIdIWukxiaBgCAX/D0d9rT0DRJKleunOx2uw4fPuy2//Dhw6pYsWKe13n55Zc1fvx4LV68WNddd12BcvTrRqPjx49rxowZVqcBAEBg8sNVQZB/1EkAAHiRn9VJoaGhiouLc5vE+uKk1i1b5j7a6sUXX9Rzzz2nhQsXqmnTpgV+GyztkrNgwYI8j+/atctHmQAAAPgX6iQAAHCpxMRE9evXT02bNlXz5s01ceJEpaena8CAAZKkvn37qnLlytnzIk2YMEGjRo3SrFmzVK1atey5j0qWLKmSJUvm65qWNhp1795dNpstz4kec1s5BAAAXCGX1QkgL9RJAABYyA/rpJ49e+ro0aMaNWqUDh06pMaNG2vhwoXZk2Pv3btXQUH/N6Bs6tSpOn/+vHr06OEWZ/To0RozZky+rmnp8LTY2FjNnTtXLpfL47Zx40Yr0wMAALAMdRIAAPi7oUOHas+ePXI6nVq3bp1atGiRfWzFihWaPn169s+7d++WYRg5tvw2GEkWNxrFxcUpJSUl1+OXe7oGAAAKj9XT/Bt1EgAA1qFOymLp8LQRI0YoPT091+M1a9bU8uXLfZgRAACAf6BOAgAAVrO00ah169Z5Ho+IiFB8fLyPsgEAoJgpIk+4iivqJAAALESdJMni4WkAAAAAAADwT5b2NPKW6LCzpscsFXrO9JjRoebmWSrE/PsuHZx7t3h/iCdJZe2nTY9ZxuSYd1T5ydR4kvRWrTamxjuxv4yp8SQpenuo6TFd58+bHhMotniCVjzZvPDM0G43P2aQyXl6YaU5w25uTLPjSZK8ENIIMjdo8Dnz/19kP2dujs5zIabGk6Sw4Aumx4wKcZoaz+zvK5IUGWzu96rSwWdMjSdJZYK98P3C5O9BZe2nTI0nSWXs5r6XZYPM/Tz6HHWSJHoaAQAAAAAAwIOA7GkEAADywWV1AgAAAH6KOkkSPY0AAAAAAADgAT2NAAAopmyM1QcAAPCIOikLjUYAABRXFEMAAACeUSdJYngaAAAAAAAAPLC80ejLL7/UqFGjtHr1aknSsmXL1LlzZ91yyy166623LM4OAIAAZhje33BFqJMAALAIdZIkixuN3nzzTd1+++36+uuv1blzZ3344Yfq3r27KleurGrVqmnYsGGaNGmSlSkCAABYgjoJAABYzdJGo9dff11vvPGGNmzYoM8//1yDBg3S+PHj9fbbb2vatGl644039Oabb1qZIgAAgcvPnqAlJyerWbNmioyMVExMjLp3765t27Z56eb9H3USAAAW8rM6ySqWNhqlpqaqY8eOkqR27dopMzNTbdq0yT7etm1b7dmzx6r0AACAD3333XcaMmSIfvjhBy1ZskQXLlzQzTffrPT0dKtTswR1EgAAsJqlq6eVLVtWe/bsUZUqVXTgwAFlZGRo7969atCggSRpz549KlOmTJ4xnE6nnE6n2z7X+QwFhbIwHAAAeXJZnYC7hQsXuv08ffp0xcTEKCUlxa2xpLjwWp1kZCrIZvda3gAABAQ/q5OsYmnLSrdu3XTvvfeqX79+WrBggfr27atHH31UQUFBstlsGjFihG6++eY8YyQnJ2vs2LFu+6r3a6Ea/Vt6M3UAAJAPnhotHA6HHA7HZV+blpYmSZdtGAlUXquTVE81bA28mToAAAgQlg5PmzBhgtq2bauPPvpIjRs31ltvvaV7771X3bp1U6dOnVS2bFklJyfnGSMpKUlpaWluW/W7m/noDgAAKLpshuH1LTk5WdHR0W7b5f62S5LL5dKwYcPUqlWr7J41xY3X6iRbXR/dAQAARZcv6qSiwNKeRhERETmWi33sscc0dOhQXbhwQZGRkZeN4elpJUPTAADwD0lJSUpMTHTbl59eRkOGDNEvv/yiVatWeSs1v+e1OomhaQAAIJ8s7WmUm7CwMEVGRmrfvn0aOHCg1ekAABCYfLAqiMPhUFRUlNt2uUajoUOH6ssvv9Ty5ct11VVX+ejNKDqokwAA8AFWT5Pkp41GFx0/flwzZsywOg0AAOADhmFo6NChmjdvnpYtW6bq1atbnZJfo04CAADeZuk4rgULFuR5fNeuXT7KBACAYsjlX0+4hgwZolmzZmn+/PmKjIzUoUOHJEnR0dEKDw+3ODvfo04CAMBCflYnWcXSRqPu3bvLZrPJyKNbls1m82FGAADAKlOnTpUktW3b1m3/e++9p/79+/s+IYtRJwEAAKtZOjwtNjZWc+fOlcvl8rht3LjRyvQAAAhsfjZW3zAMj1txbDCSqJMAALCUn9VJVrG00SguLk4pKSm5Hr/c0zUAAIBARZ0EAACsZunwtBEjRig9PT3X4zVr1tTy5ct9mBEAAMUIDQ5+jToJAAALUSdJsrjRqHXr1nkej4iIUHx8vI+yAQAA8B/USQAAwGqWNhoBAAAL8QQNAADAM+okSQHaaFQuLPeu3IUVHXLW9JilTI5ZJtj8+y4TfNrUeOWDT5kaT5LKBJmboySVtZv7u7m3lPmTla6oca2p8fbur2JqPEmKjKtrekyt/cn8mABQjNjsdi8E9cIqbmbHtHthKk+zc/TC+2gEeSGmySGDz5kbT5LsZsc8Z/7n55QzzPSY1SOPmxov0gu/nNLBZ0yNZ/b3layY5n+vKms393tQGbu576MklQ1ymhqvTFBANjcUO/wWAQAorlw8QQMAAPCIOkmSxaunAQAAAAAAwD/R0wgAgOLKcFmdAQAAgH+iTpJETyMAAAAAAAB4QE8jAACKK1YFAQAA8Iw6SRI9jQAAAAAAAOCB5T2Nzp49q9mzZ2vVqlU6ePCggoKCdM0116h79+5q37691ekBABC4WBXE71EnAQBgEeokSRb3NNq5c6fq1q2rpKQkffvtt1q0aJFsNpt+/PFHdezYUXfddZcyMjKsTBEAAMAS1EkAAMBqljYaPfzww7rlllt06NAh7d27V8nJyXK5XPrhhx+0ZcsW/fjjj3r++eetTBEAgMBlGN7fUGjUSQAAWIg6SZLFjUbfffedHn30UdlsNknS8OHD9e233+rPP//Utddeq4kTJ2rGjBlWpggAAGAJ6iQAAGA1S+c0KlWqlE6dOpX985kzZ5SRkaHQ0FBJ0nXXXaeDBw/mGcPpdMrpdLrtyzyfKXuo3fyEAQAIJEXkCVdx5a06yWVkKshGnQQAQJ6okyRZ3NOoQ4cOSkxM1NatW5WamqrBgwercePGioyMlCTt3btXMTExecZITk5WdHS02/bb+5t9kD0AAID3eKtOSnX95ov0AQBAALC00ejFF1+U0+lUvXr1VLNmTf3www/673//m3386NGjGjFiRJ4xkpKSlJaW5rbV69vYy5kDABAAGKvv17xVJ1UPquft1AEAKPqokyRZPDwtJiZGa9eu1Y4dO+R0OlWnTh0FB/9fSj169LhsDIfDIYfD4baPoWkAAKCo81adxNA0AACQX5b2NLro2muvVYMGDdwKIUnat2+fBg4caFFWAAAEOJfL+xuuGHUSAAAWoE6S5CeNRrk5fvw4q4IAAAB4QJ0EAAC8zdLhaQsWLMjz+K5du3yUCQAAxVARGUtfXFEnAQBgIeokSRY3GnXv3l02m01GHr8Mm83mw4wAAAD8A3USAACwmqXD02JjYzV37ly5XC6P28aNG61MDwCAwMaqIH6NOgkAAAtRJ0myuNEoLi5OKSkpuR6/3NM1AACAQEWdBAAArGbp8LQRI0YoPT091+M1a9bU8uXLfZgRAADFiIsGB39GnQQAgIWokyRZ3GjUunXrPI9HREQoPj7eR9kAAAD4D+okAABgNUsbjQAAgHUMw2V1CgAAAH6JOilLQDYalQvNvSt3YZUNPW16zNLB5uZZxm5+jmWDzY1ZNsj8300Zu9P8mEHmTvdVOijC1HiS9K/K60yNN/ba8qbGk6Q/95t/3xV+NzfPjCNHTY0HAP7OFmT+ims2u930mDI5T8MLK80ZJtcLhhcWw/NKTJNnRfVGjvZz5sazOc2fCjbdGWp6zCCZO5ymdPAZU+NJUhmTv1+UMfk7lSSVtZ8yPWYZu7nvZdkgb3wHMrd5ICoo3NR4sEZANhoBAIB8YKw+AACAZ9RJkmg0AgCg+GLlLQAAAM+okyRJ5vezBAAAAAAAQJFHTyMAAIorFxM8AgAAeESdJImeRgAAAAAAAPDAL3oarV+/XmvXrtWhQ4ckSRUrVlTLli3VvHlzizMDACCAMVa/SKBOAgDAAtRJkixuNDpy5Ij++c9/avXq1apSpYoqVKggSTp8+LCGDx+uVq1a6bPPPlNMTIyVaQIAAPgcdRIAALCapcPTHnzwQWVmZmrLli3avXu31q1bp3Xr1mn37t3asmWLXC6XhgwZYmWKAAAELMPl8vqGwqNOAgDAOtRJWSztabRo0SKtXLlStWvXznGsdu3aev3119W2bVvfJwYAAGAx6iQAAGA1SxuNHA6HTp48mevxU6dOyeFw+DAjAACKEcbq+zXqJAAALESdJMni4Wk9e/ZUv379NG/ePLei6OTJk5o3b54GDBig3r175xnD6XTq5MmTblvm+Uxvpw4AAOBV3qqTXAZ1EgAAyB9Lexq9+uqrcrlc6tWrlzIyMhQaGipJOn/+vIKDg3Xvvffq5ZdfzjNGcnKyxo4d67av2f0N1OLf13ktbwAAAoKLJ2j+zFt10jX2BqoZTJ0EAECeqJMkSTbDsL7P1cmTJ5WSkuK2lGxcXJyioqIu+1qn0ymn0+m2b+Rv98seajc1x7Khp02NJ0mlg9NNjVfGbn6OZYPNjVk2yNx7lqQyduflTypozCBzO+GVDiphajxJ+uBUOVPjjd1wq6nxJKnUinDTY1aYv8PUeBlHjpoaD7hSS1yf+OxaHcPv8fo1Fp39wOvXCHRm10n/LH+/gmzm1klBkZGmxpMkRZj7N8SIMP9vsSvC3OGBmSXMf56b4ZWY5tZJGeHmD344E2MzNd7pauZPWFuiyinTY7aqnGpqvKvC/jI1niSVMfn7RRmTv1NJUlm7+b+bMvYzpsYrG+SN70Dm/v8iKsj87wJBFbebHjM31ElZLO1pdFFUVJTatWtXqNc6HI4c4/nNbjACACAgGUVj1Y7izuw6yewGIwAAAhJ1kiSL5zSSpLNnz2rVqlX67bffchw7d+6c3n//fQuyAgAAsB51EgAAsJKljUbbt29X3bp11aZNGzVs2FDx8fE6cOBA9vG0tDQNGDDAwgwBAAhchsvw+obCo04CAMA61ElZLG00euKJJ9SgQQMdOXJE27ZtU2RkpG688Ubt3bvXyrQAAAAsR50EAACsZumcRmvWrNG3336rcuXKqVy5cvriiy/04IMPqnXr1lq+fLkiIiKsTA8AgMDGWH2/Rp0EAICFqJMkWdzT6OzZswoO/r92K5vNpqlTp6pr166Kj4/X9u2+mxkdAABYb8qUKapWrZrCwsLUokULrV+/3uqULEOdBAAA/q6gtdInn3yiOnXqKCwsTA0bNtTXX39doOtZ2mhUp04dbdiwIcf+yZMnq1u3brrtttssyAoAgOLB38bqz5kzR4mJiRo9erQ2btyoRo0aqWPHjjpy5IiX3gH/Rp0EAIB1/K1OkgpeK61Zs0a9e/fWvffeq02bNql79+7q3r27fvnll3xf09JGo9tvv12zZ8/2eGzy5Mnq3bu3DKNoTA4FAACuzKuvvqpBgwZpwIABqlevnqZNm6YSJUro3XfftTo1S1AnAQCASxW0Vpo0aZJuueUWjRgxQnXr1tVzzz2n66+/XpMnT873NS1tNEpKSsqza9Qbb7whl4txhAAAeIXh8v6WT+fPn1dKSooSEhKy9wUFBSkhIUFr1671xt37PeokAAAs5Ed1klS4Wmnt2rVu50tSx44dC1RbWToRNgAACGxOp1NOp9Ntn8PhkMPhcNt37P+1d+/RMd55GMC/M5NJMiRIQi5uSUiIFAchJLKCzSK1bmsFRURXiVJUF2VLOC7lsFqVNqrbdWvdVoXSdRdraV3CEXfiFioSRCWIBJln/3BMzU7CvJNJMyPP55w5x7y/zDPfRGbm8c47rzt3pKioSLy8vIy2e3l5yblz58p8TiIiIqLfmrk9ScSyrpSVlVXs12dlZZk/JCqwgoICJCQkoKCgwCbzyiLTHmYsi0zOaLuZnNF2MzmjbWfai4SEBIiI0SUhIcHk627cuAERwY8//mi0ffz48QgNDf2NpqUX8fFacb5ve5ixLDI5Y8WZsSwyOaNtZ9oLc3sSYFlX0mq1WLVqldG2zz//HJ6enmbPWKF3GuXm5kJEkJuba5N5ZZFpDzOWRSZntN1Mzmi7mZzRtjPtRUFBAXJzc40uxZXCwsJCaDQaJCcnG22PjY1F9+7df6Np6UV8vFac79seZiyLTM5YcWYsi0zOaNuZ9sLcngRY1pXq1KmDTz75xGjb1KlT0bRpU7NnLNdzGhEREdHrzcnJSapUqWJ0Ke6Qa0dHRwkJCZHdu3cbtun1etm9e7eEhYX9liMTERER/SbM7UkilnWlsLAwo68XEdm5c6eibsVzGhEREZFNGDdunAwePFhatmwpoaGh8umnn8rDhw9lyJAh5T0aERERUbl7VVeKjY2VWrVqyccffywiImPGjJHIyEj5+9//Ll27dpU1a9ZIamqqLFmyxOz75E4jIiIisgl9+/aV27dvy9SpUyUrK0uaNWsm27ZtMzmBIxEREVFF9KqudO3aNVGrf/1AWXh4uKxatUo++ugjmTx5sgQGBsrGjRulcePGZt9nhd5p5OTkJAkJCSUe/lXeeWWRaQ8zlkUmZ7TdTM5ou5mc0bYzX1ejRo2SUaNGlfcYJHy8VqTv2x5mLItMzlhxZiyLTM5o25mvs5d1pb1795ps69Onj/Tp08fi+1MBgMW3JiIiIiIiIiKi1xJPhE1ERERERERERCa404iIiIiIiIiIiExwpxEREREREREREZngTiOyCp4ai4iIiKh47ElERGSvKtSJsO/cuSP//Oc/5aeffpKsrCwREfH29pbw8HCJi4uTGjVqlPOE9svR0VHS0tKkUaNG5T0KERERWYA9qeywJxERkb2qMDuNjhw5Ip07d5ZKlSpJVFSUeHl5iYhIdna27N69W/Lz82X79u3SsmXLcp3z0aNHcvToUXF3d5fg4GCjtYKCAlm3bp3ExsYqyjx79qwcPHhQwsLCJCgoSM6dOycLFy6UwsJCGThwoHTs2NHsrHHjxhW7feHChTJw4EDx8PAQEZEFCxYomvFFDx8+lHXr1snFixfFx8dH+vfvb8gtL++9957ExMTI7373u3Kd41Vu3rwpSUlJsn//frl586ao1WqpV6+e9OzZU+Li4kSj0ZT3iEQVxuHDh03+8R0WFiahoaHlPBmRKfYk9qTSYE8iIqXYk+wIKojWrVtj2LBh0Ov1Jmt6vR7Dhg1DmzZtrHqf165dw5AhQ8z++vPnz8PX1xcqlQpqtRrt2rVDZmamYT0rKwtqtVrRDFu3boWjoyPc3d3h7OyMrVu3okaNGoiKikLHjh2h0Wiwe/dus/NUKhWaNWuG9u3bG11UKhVatWqF9u3bo0OHDopmbNSoEXJycgA8+5n5+fmhatWqaNWqFdzd3eHp6YnLly+bnXf06FGjr1+xYgXCw8NRu3ZttG3bFqtXr1Y0HwDD30lgYCDmzJmDmzdvKs74f4sWLcKgQYMM86xYsQKNGjVCw4YNMWnSJDx58kRR3pEjR1C1alWEhIQgIiICGo0GgwYNQt++fVGtWjWEh4cjLy9P8ZyFhYVYu3Ytxo4di379+qFfv34YO3Ys1q1bh8LCQsV5r5KVlYXp06crvt3169dx//59k+2PHz/Gf/7zH8V5d+7cwZ49ewy/m7dv38acOXMwffp0nDlzRnFeSfz9/XHhwoVS5+j1euzZswdLlizB5s2b8fjxY8UZ169fx+3btw3X9+3bh7feegsREREYMGAAfvzxR0V58+fPx9WrVxXP8SqbN2/GlClTsH//fgDA7t27ER0djc6dO+PLL79UnJefn4+vv/4aQ4YMQZcuXfDmm29i1KhR2LVrl0XzZWdnIyIiAiqVCr6+vggNDUVoaKjh+T0iIgLZ2dkWZROVFfYk9iRb60mAdbsSexJ7EnuSZT0JsG5XYk+yPxVmp5GzszPOnj1b4vrZs2fh7Oxs1fs8fvy4ovLSs2dPdO3aFbdv30Z6ejq6du0Kf39/ZGRkALCsDIWFheFvf/sbAGD16tVwc3PD5MmTDesffvgh/vCHP5id9/HHH8Pf39+kQDk4OOD06dOKZntOpVIZnhgGDBiA8PBw3Lt3DwBw//59REVFoX///mbnNW3aFDt37gQAfPXVV9DpdBg9ejSSkpIwduxYuLi44Ouvv1Y8465duzBmzBhUr14dWq0W3bt3x+bNm1FUVKQoCwBmzJgBV1dX9O7dG97e3pgzZw48PDwwc+ZMzJ49GzVq1MDUqVMVZbZt2xbTpk0zXF+5ciVat24NALh79y6aNWuG0aNHK8pMT09HvXr14OzsjMjISMTExCAmJgaRkZFwdnZGQEAA0tPTFWW+itLHTWZmJlq1agW1Wm0ogC+WIkseN4cOHULVqlWhUqng5uaG1NRU+Pv7IzAwEPXr14dOp8PRo0cVZS5cuLDYi0ajwaRJkwzXzRUdHW14nOTk5KB169ZQqVSoUaMG1Go1goKCcOvWLUUzhoaGYvPmzQCAjRs3Qq1Wo3v37pg4cSJ69eoFrVZrWDeHSqWCRqNBVFQU1qxZY5XyvHjxYjg4OCAkJARVqlTBypUr4erqiqFDh2L48OHQ6XT49NNPzc5LT0+Hr68vPD09UadOHahUKnTt2hWtW7eGRqNBnz59FO/A7d27N8LCwnDu3DmTtXPnziE8PBx//vOfFWUSlTX2JPYkW+pJgPW7EnsSexJ7kvKeBFi/K7En2Z8Ks9PIz88Py5cvL3F9+fLl8PX1VZS5adOml14++eQTRU/Cnp6eOHHihOG6Xq9HfHw86tati0uXLln0pF6lShXDi1VRUREcHBxw7Ngxw/rJkyfh5eWlKPPw4cNo0KABPvjgA8NeemuVoXr16mHHjh1G6wcOHECdOnXMztPpdIa99s2bN8eSJUuM1r/99lsEBwdbPOPjx4+xdu1adO7cGRqNBjVr1sTkyZMVlYL69evju+++A/DsxV+j0eCbb74xrG/YsAEBAQGKZtTpdLh06ZLhelFREbRaLbKysgAAO3bsQM2aNRVlRkVFoUePHsjNzTVZy83NRY8ePdCpUydFmWlpaS+9rF27VtHveWxsLFq3bo0jR45g586dCAkJQcuWLXH37l0Az8qQSqVSNGNUVBSGDh2KvLw8zJs3D7Vr18bQoUMN60OGDEHPnj0VZapUKtSuXRt+fn5GF5VKhVq1asHPzw/+/v6K8p7/To4YMQLBwcGGd46vX7+OkJAQxMfHK5qxcuXKhozWrVtjzpw5RuuLFi1C8+bNFc24dOlS9OjRA1qtFh4eHhgzZgxOnjypaK4XBQcHGx7Te/bsgbOzMz7//HPD+tKlS9GoUSOz86KjozF8+HDD0RVz5sxBdHQ0AODChQvw8/NDQkKCohldXFyMnmf/X2pqKlxcXBRlEpU19iT2pOdsoScB1u9K7EnsSexJynsSYP2uxJ5kfyrMTqPExEQ4OTlh9OjR2LRpEw4ePIiDBw9i06ZNGD16NHQ6ndEDyhzPD8VVqVQlXpQ8qbu6uhZ7OOfIkSNRu3Zt7Nu3z6IydPHiRcN1FxcXoxfMq1evWvTO4f379xEbG4umTZvi5MmT0Gq1pSpDz/f016xZ0+SJUumMHh4eSE1NBfCsYB4/ftxo/eLFi9DpdIpnLO4wyYyMDCQkJMDX11fR341OpzO8MwoAWq0Wp06dMly/evUqKlWqpGhGX19fw2GowLN3llQqFfLz8wEAV65cUfx3rdPpXvrCdeLECYt+liU9bp5vV/KzrFmzJg4dOmS4XlBQgG7duqFZs2bIycmx6B8Rbm5uhsfi48ePoVarje7j6NGjqFWrlqLM4cOHo1mzZiaPcUv/IfHi72TDhg2xadMmo/Vdu3YpKlcAULVqVaSlpQF49th5/ufnLl68qOj38sUZs7OzMXfuXAQFBUGtVqNVq1ZYsmSJ4o8CFPfYefF39MqVK4pmrFSpktFh74WFhdBqtbhz5w6AZ+8k+vn5KZrRw8MDe/fuLXE9JSUFHh4eijKJyhp70jPsSbbRkwDrdyX2pGfYk55hTzKftbsSe5L9UZf3OZV+KyNHjpTly5fLoUOHpHfv3hIWFiZhYWHSu3dvOXTokCxbtkzeffddRZk+Pj6yYcMG0ev1xV6OHTumKC8oKEhSU1NNticmJkqPHj2ke/fuivJERPz8/CQ9Pd1w/aeffpK6desarl+7dk18fHwU57q4uMjy5ctl0qRJEhUVJUVFRYozXvT73/9eWrRoIXl5eXL+/HmjtYyMDEUneIyOjpakpCQREYmMjJT169cbra9bt04CAgJKNe9zdevWlWnTpsmVK1dk27ZtZt/O29tbzpw5IyIi6enpUlRUZLguInL69Gnx9PRUNEvPnj0lPj5etm3bJikpKTJgwACJjIwUnU4nIiLnz5+XWrVqKcqsVq2aXL16tcT1q1evSrVq1RRluru7y1dffSVXrlwxuVy+fFm2bNmiKC83N1fc3NwM152cnGTDhg3i5+cnHTp0kFu3binKExF5/Pix4eem1WqlUqVKUr16dcN69erVJScnR1Hm4sWLZerUqdK5c2dJTExUPFNxVCqViIj88ssvUr9+faO1gIAAyczMVJQXGRkpq1evFhGR5s2by969e43WU1JSFP8OPefp6SkTJkyQs2fPyt69eyU4OFjef/99xc8/Hh4ekpGRISIimZmZ8vTpU7l27ZphPSMjQ9zd3c3Oq1atmty/f99wPT8/X54+fSqOjo4iItK0aVO5efOmohn79u0rgwcPluTkZMnLyzNsz8vLk+TkZBkyZIj0799fUSZRWWNPeoY9yTZ6koj1uxJ70jPsSc+wJ5nP2l2JPckOlfdeq/Lw+PFjZGZmIjMz06KToD3XrVs3TJkypcT148ePKzrcc/bs2YZD/YozYsQIxYePJiUlYcuWLSWuT5o0CX/5y18UZf6/69evY+PGjXjw4IFFt582bZrRZdu2bUbrf/3rX9GvXz+z827cuAE/Pz+0a9cO48aNg06nQ0REBN555x20a9cOjo6O+OGHHxTN6OfnZ9ibbg0fffQRatSogaFDh8Lf3x8ffvgh6tati6SkJCxevBh16tTB+++/ryjz/v37iImJgYODA1QqFcLDw41OdLl9+3asW7dOUeaUKVPg5uaGBQsWIC0tDVlZWcjKykJaWhoWLFgAd3d3xR/d6dSpE2bMmFHiutLHTZMmTbB+/XqT7U+ePEHPnj1Rt25dxe+gBQUFGZ2PYsuWLYZ3IgHg4MGDqF27tqLM537++Wd07NgRXbp0wc2bN0v1Dtqbb76JXr16wc3NzeQz9AcPHlT8kYozZ87Aw8MDsbGxmDFjBlxcXDBw4EDMmjULsbGxcHJywtKlS83OU6vVLz2RYW5ursnHIl5l5MiRCAwMxMyZMxEaGorBgwcjKCgIW7duxbZt29CkSRO8/fbbZucNHjwYkZGROHv2LC5fvoy+ffsaHVq+d+9eRR/7AJ69ixsfHw9HR0eo1Wo4OzvD2dkZarUajo6OGDFiBAoKChRlEv2W2JN+xZ5kHmv3JMD6XYk9yRh7EnuSuazdldiT7E+F3GlkLfv27cPWrVtLXH/w4MFLD72jsvPLL79g4sSJCA4OhrOzMxwdHeHr64u33noLR44cKe/xUFRUhFmzZuGPf/wjZs+eDb1ej9WrV6NOnTrw8PBAXFycxeXy0aNHxf7vGJaaM2cOfHx8DIdDPz802sfHB3PnzlWct2HDBqxcubLE9bt372LZsmVm502YMKHE8wU8efIE3bt3V/yPiGnTpr30f4+ZPHky/vSnPynKfJFer8fs2bPh7e0NjUZjURmKi4szuqxdu9Zoffz48ejcubPi3IsXL6Jfv35wdXU1HA6v1WoRHh6O5ORkRVklfVyhNB48eIB33nkHjRs3xrBhw1BYWIh58+bB0dERKpUK7du3V3Sf2dnZaNOmjeH329fX1+hz9v/617/w2WefWTRrbm4u9uzZg1WrVmHVqlXYs2dPsee9IHpdsSfZLlvvSUDZdSX2pF+xJ7EnmaOsuhJ7kv1QAUB5H+1ERLbvypUrkpWVJSLPDhn39/cv54meefr0qeTn50uVKlVKXL9x44b4+vpa7T7z8/NFo9GIk5NTqXKOHj0q+/fvl9jYWKNDx63h4cOHotFoxNnZ2aLbA5Bbt26JXq+X6tWri1artep81lZQUCBPnjwRV1dXi26fnp4uhYWFEhQUJA4ODlaejoiIXnfsSb9iT7I9pe1JIuxKFVmFOacREZWOv7+/4RwXz4vQ9evX5e2337bq/SjNdHBwKLEIiYjcvHlTpk+fbo3RDHJycmTEiBGlzgkJCZExY8aIm5ub1X+Wd+/eVXz+kRepVCrx8vISHx8fQxGy9ozWzHN2dhZXV1eLMwMDA6Vx48YmJcjSvEePHsn+/fuNzr/xXEFBgaxYsUJxJhER2S72pF+xJ1mHLfUkEet2JfYk+8IjjYjIYmlpadKiRYtSn+CzLDPtYcayyOSM5TfjhQsXpFOnTnLt2jVRqVQSEREhq1evlpo1a4qISHZ2ttSsWdOq3zcREdme1/V17nXI5Izll8meZH94XBkRlej7779/6frly5fLPdMeZiyLTM5oncyymHHixInSuHFjSU1NlXv37snYsWMlIiJC9u7da/S/MhERkX2rqK9z9pDJGW03kz3J/vBIIyIqkVqtFpVKJS97mlCpVIreCbB2pj3MWBaZnNF2Z/Ty8pJdu3ZJkyZNROTZeQ/effdd+fe//y0pKSlSuXJlvoNGRPQaqKivc/aQyRltN5M9yf7wnEZEVCIfHx/ZsGGD6PX6Yi/Hjh0r90x7mLEsMjmj7c746NEjo8/7q1QqSUpKkm7duklkZKRcuHBBcSYREdmeivo6Zw+ZnNF2M9mT7A93GhFRiUJCQuTo0aMlrr/qXYffItMeZiyLTM5ouzMGBQVJamqqyfbExETp0aOHdO/eXVEeERHZpor6OmcPmZzRdjPZk+wPz2lERCUaP368PHz4sMT1gIAASUlJKddMe5ixLDI5o+3O2KtXL1m9erUMGjTIZC0xMVH0er0sXrxYUSYREdmeivo6Zw+ZnNF2M9mT7A/PaURERERERERERCb48TQiIiIiIiIiIjLBnUZERERERERERGSCO42IiIiIiIiIiMgEdxoREREREREREZEJ7jQiIiIiIiIiIiIT3GlE9BqIi4sTlUplcunSpYtkZmaKm5ubfPbZZ0a3OXTokGi1WtmxY0ep7//u3bvy3nvvScOGDUWn00ndunVl9OjRkpubW+psIiIiotJgTyIispxDeQ9ARNbRpUsXWbp0qdE2JycncXNzk0WLFsnw4cMlOjpaAgMD5dGjRzJ48GAZOnSodOrUqdT3nZmZKZmZmTJ//nwJDg6WjIwMiY+Pl8zMTFm/fn2p84mIiIhKgz2JiMgyPNKI6DXh5OQk3t7eRhc3NzcRERk4cKB07txZ4uLiRK/Xy6RJk+TJkycyb948s/OTkpKkfv364ujoKA0bNpSVK1ca1ho3bizfffeddOvWTerXry8dO3aUWbNmyebNm+Xp06dm5Z86dUqio6PFxcVFvLy8ZNCgQXLnzh1lPwQiIiKiYrAnERFZhjuNiCqIxYsXS3p6ugwYMEASExNl6dKl4uLiYtZtk5OTZcyYMfLBBx/IqVOnZPjw4TJkyBBJSUkp8Ta5ublSpUoVcXB49QGN9+7dk44dO0rz5s0lNTVVtm3bJtnZ2RITE2P290dERERkKfYkIqLiqQCgvIcgotKJi4uTb775RpydnY22T548WSZPnmy4/uWXX0p8fLyMGDFCvvjiC7Pz27ZtK2+88YYsWbLEsC0mJkYePnwoP/zwg8nX37lzR0JCQmTgwIEya9asV+bPnDlT/vvf/8r27dsN237++WepU6eOnD9/Xho0aGD2rEREREQvYk8iIrIcz2lE9Jro0KGDJCUlGW1zd3c3/LmoqEiWLVsmlSpVkoMHD8rTp0/NendLROTs2bMybNgwo21t27aVhQsXmnxtXl6edO3aVYKDg2XatGlm5aelpUlKSkqx7+hdunSJZYiIiIhKhT2JiMgy3GlE9JqoXLmyBAQElLg+f/58uXz5sqSmpkpkZKTMnj1bpk6datUZ7t+/L126dBFXV1dJTk4WrVZr1u0ePHgg3bp1k7lz55qs+fj4WHVGIiIiqnjYk4iILMNzGhFVAKdPn5aEhARJSkqSRo0aSVJSksycOVNOnDhh1u0bNWokBw4cMNp24MABCQ4ONlzPy8uTTp06iaOjo3z//fcmh4C/TIsWLeT06dPi5+cnAQEBRpfKlSubnUNERESkFHsSEVHJeE4jotdAXFycZGdnm/xXsg4ODlKtWjVp06aNNGjQQFatWmVY69+/v5w/f14OHz78ysOvN27cKDExMbJw4UKJioqSzZs3y4QJE2TXrl3Svn17QxHKz8+X5ORkowJTo0YN0Wg0L83PzMyUZs2aSWRkpEyYMEHc3d3l4sWLsmbNGvnHP/7xytsTERERlYQ9iYioFEBEdm/w4MEQEZNLw4YNMX36dHh7eyMnJ8foNjk5OfD29sb06dPNuo8vvvgC9erVg1arRYMGDbBixQrDWkpKSrH3LyK4cuWKWfkXLlxAr169UK1aNeh0OgQFBWHs2LHQ6/Vm/xyIiIiI/h97EhGR5XikERERERERERERmeA5jYiIiIiIiIiIyAR3GhGRvPHGG+Li4lLs5dtvvy11fnx8fIn58fHxVvgOiIiIiMoGexIRVWT8eBoRSUZGhjx58qTYNS8vL3F1dS1V/q1btyQvL6/YtSpVqoinp2ep8omIiIjKCnsSEVVk3GlEREREREREREQm+PE0IiIiIiIiIiIywZ1GRERERERERERkgjuNiIiIiIiIiIjIBHcaERERERERERGRCe40IiIiIiIiIiIiE9xpREREREREREREJrjTiIiIiIiIiIiITHCnERERERERERERmfgfctQNkaK9N78AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "target_reactions = ['PHB_Synthesis', 'BIOMASS_Ecoli_core_w_GAM']\n", "weights = [1.0, 40.0]\n", "variable_reactions = ['EX_glc__D_e', 'EX_o2_e']\n", "variable_ranges = [(0, 21, 1), (0, 21, 1)]\n", "\n", "# 获取优化结果\n", "optimization_results = analyzer.perform_optimization(\n", " target_reactions=target_reactions,\n", " weights=weights,\n", " variable_reactions=variable_reactions,\n", " variable_ranges=variable_ranges\n", ")\n", "\n", "analyzer.plot_fluxes(optimization_results,variable_reactions)" ] }, { "cell_type": "markdown", "id": "6b60536d-5367-402d-a9b9-0d86c1627219", "metadata": {}, "source": [ "### Metabolic Network Visualization" ] }, { "cell_type": "markdown", "id": "5d21eae8-29bf-4a58-9ebd-96c26143fd6c", "metadata": {}, "source": [ "The model provides `plot_metabolic_network` to visualize the metabolic network. When plotting, you can specify particular metabolites, genes, or reaction IDs. Green arrows represent metabolites involved in reactions, while red arrows represent metabolites produced by reactions.The dark blue dots represent reactions, while the light blue dots represent metabolites involved in the reactions. Hovering over the dots with the mouse reveals more information.\n", "\n", "\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": 21, "id": "d487797a-b1e9-4b32-8e81-d42016374f1c", "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "hoverinfo": "none", "line": { "color": "red", "width": 1 }, "mode": "lines", "type": "scatter", "x": [ -0.015146057166839871, 0.08485394283316014, null, -0.015146057166839871, -0.11514605716683987, null, -0.015146057166839871, -0.11514605716683987, null ], "y": [ -0.0012965670717125974, 0.09870343292828741, null, -0.0012965670717125974, 0.09870343292828741, null, -0.0012965670717125974, -0.1012965670717126, null ] }, { "hoverinfo": "none", "line": { "color": "green", "width": 1 }, "mode": "lines", "type": "scatter", "x": [ -0.028144295943181914, -0.015146057166839871, null, -0.009020555258530245, -0.015146057166839871, null ], "y": [ 0.06250637268214404, -0.0012965670717125974, null, -0.06607850131306389, -0.0012965670717125974, null ] }, { "hoverinfo": "text", "hovertext": [ "PPCK
atp_c + oaa_c --> adp_c + co2_c + pep_c", "adp_c
ADP C10H12N5O10P2
C10H12N5O10P2", "atp_c
ATP C10H12N5O13P3
C10H12N5O13P3", "co2_c
CO2 CO2
CO2", "oaa_c
Oxaloacetate
C4H2O5", "pep_c
Phosphoenolpyruvate
C3H2O6P" ], "marker": { "color": [ "#00008B", "#1f77b4", "#1f77b4", "#1f77b4", "#1f77b4", "#1f77b4" ], "colorbar": { "thickness": 15, "title": { "side": "right", "text": "Node Connections" }, "xanchor": "left" }, "line": { "width": 2 }, "size": [ 30, 20, 20, 20, 20, 20 ] }, "mode": "markers+text", "text": [ "PPCK", "adp_c", "atp_c", "co2_c", "oaa_c", "pep_c" ], "textposition": "top center", "type": "scatter", "x": [ -0.015146057166839871, 0.08485394283316014, -0.028144295943181914, -0.11514605716683987, -0.009020555258530245, -0.11514605716683987 ], "y": [ -0.0012965670717125974, 0.09870343292828741, 0.06250637268214404, 0.09870343292828741, -0.06607850131306389, -0.1012965670717126 ] } ], "layout": { "annotations": [ { "showarrow": false, "text": "Hover over nodes to see details", "x": 0.005, "xref": "paper", "y": -0.002, "yref": "paper" }, { "arrowcolor": "red", "arrowhead": 3, "arrowsize": 2, "arrowwidth": 1.5, "ax": -0.015146057166839871, "axref": "x", "ay": -0.0012965670717125974, "ayref": "y", "showarrow": true, "x": 0.08485394283316014, "xref": "x", "y": 0.09870343292828741, "yref": "y" }, { "arrowcolor": "red", "arrowhead": 3, "arrowsize": 2, "arrowwidth": 1.5, "ax": -0.015146057166839871, "axref": "x", "ay": -0.0012965670717125974, "ayref": "y", "showarrow": true, "x": -0.11514605716683987, "xref": "x", "y": 0.09870343292828741, "yref": "y" }, { "arrowcolor": "red", "arrowhead": 3, "arrowsize": 2, "arrowwidth": 1.5, "ax": -0.015146057166839871, "axref": "x", "ay": -0.0012965670717125974, "ayref": "y", "showarrow": true, "x": -0.11514605716683987, "xref": "x", "y": -0.1012965670717126, "yref": "y" }, { "arrowcolor": "green", "arrowhead": 3, "arrowsize": 2, "arrowwidth": 1.5, "ax": -0.028144295943181914, "axref": "x", "ay": 0.06250637268214404, "ayref": "y", "showarrow": true, "x": -0.015146057166839871, "xref": "x", "y": -0.0012965670717125974, "yref": "y" }, { "arrowcolor": "green", "arrowhead": 3, "arrowsize": 2, "arrowwidth": 1.5, "ax": -0.009020555258530245, "axref": "x", "ay": -0.06607850131306389, "ayref": "y", "showarrow": true, "x": -0.015146057166839871, "xref": "x", "y": -0.0012965670717125974, "yref": "y" } ], "autosize": true, "hovermode": "closest", "margin": { "b": 0, "l": 0, "r": 0, "t": 40 }, "showlegend": false, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "font": { "size": 16 }, "text": "
Metabolic Network - Reaction and Metabolites" }, "xaxis": { "autorange": true, "range": [ -0.1295018567229665, 0.09920974238928676 ], "showgrid": false, "type": "linear", "zeroline": false }, "yaxis": { "autorange": true, "range": [ -0.1235410560496685, 0.12094792190624332 ], "showgrid": false, "type": "linear", "zeroline": false } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAABE8AAAFoCAYAAACmM9U+AAAAAXNSR0IArs4c6QAAIABJREFUeF7s3Qd8XNWdPvxnepHccO/dxr03jDvYYBv3XmVjCCmbzYZskmWT7CabTbJZlt3NPxsSwL1344YbLoB7xcYNN2ywMTbu0vTyvueMRh7J0sydcqUpz3w+xEG699xzvueM8Px073k0fr/fD74oQAEKUIACFKAABShAAQpQgAIUoAAFihXQsHjClUEBClCAAhSgAAUoQAEKUIACFKAABUoWYPGEq4MCFKAABShAAQpQgAIUoAAFKEABCoQRYPGEy4MCFKAABShAAQpQgAIUoAAFKEABCrB4wjVAAQpQgAIUoAAFKEABClCAAhSgAAViE+CdJ7G58SwKUIACFKAABShAAQpQgAIUoAAFMkSAxZMMmWgOkwIUoAAFKEABClCAAhSgAAUoQIHYBFg8ic2NZ1GAAhSgAAUoQAEKUIACFKAABSiQIQIsnmTIRHOYFKAABShAAQpQgAIUoAAFKEABCsQmwOJJbG48iwIUoAAFKEABClCAAhSgAAUoQIEMEWDxJEMmmsOkAAUoQAEKUIACFKAABShAAQpQIDYBFk9ic+NZFKAABShAAQpQgAIUoAAFKEABCmSIAIsnGTLRHCYFKEABClCAAhSgAAUoQAEKUIACsQmweBKbG8+iAAUoQAEKUIACFKAABShAAQpQIEMEWDzJkInmMClAAQpQgAIUoAAFKEABClCAAhSITYDFk9jceBYFKEABClCAAhSgAAUoQAEKUIACGSLA4kmGTDSHSQEKUIACFKAABShAAQpQgAIUoEBsAiyexObGsyhAAQpQgAIUoAAFKEABClCAAhTIEAEWTzJkojlMClCAAhSgAAUoQAEKUIACFKAABWITYPEkNjeeRQEKUIACFKAABShAAQpQgAIUoECGCLB4kiETzWFSgAIUoAAFKEABClCAAhSgAAUoEJsAiyexufEsClCAAhSgAAUoQAEKUIACFKAABTJEgMWTDJloDpMCFKAABShAAQpQgAIUoAAFKECB2ARYPInNjWdRgAIUoAAFKEABClCAAhSgAAUokCECLJ5kyERzmBSgAAUoQAEKUIACFKAABShAAQrEJsDiSWxuPIsCFKAABShAAQpQgAIUoAAFKECBDBFg8SRDJprDpAAFKEABClCAAhSgAAUoQAEKUCA2ARZPYnPjWRSgAAUoQAEKUIACFKAABShAAQpkiACLJ2U80a365uD07nkJ7YUabSa0gynQGA1TYJJKsYvpsB7UGIMabZbitPJSFKAABShAAQpQgAIUUCyQ9sUT8Zd78QpXoFByTEmi8X54iPf84vpVXJuJuo6SdpQco7Tfildygg+MdQyxdiO4Bouen+jCWjz9K6kvpW0V6xjiOU/JGJX8HFFyTDr+rFHiF8/88FwKUIACFKAABShAAQqoLcDiCYBM/UATy+JSYhXrB6VYz4tlHJHOKe2+lHS90u5HLB/ck6WPkeY0nu8rGaPS90akYm4sc6BkbErGoKSd0GOUFmrVuHa0feXxFKAABShAAQpQgAIUiEcgI4on4jfmkT6cxvqX+1jPC05avOcXN/lqtFm0v+GuEev1Yz0vnjeAWh9Uo+2TGp7R9iHc8ck0N4kcl9K2lIw/eAx/1jypqsRP6VzwOApQgAIUoAAFKEABCpSFAIsn+XuOlPQb1NBJKfrYQvA3zfEcE/qBK1w7ocWLSMcp/W2waKfoGCI9JhLadqQPiaH9jHSdcJZKxxPrHAaLa8H+Kim2JfrNGkvxJJJpSWtGfL24eS6pvUjrPNw6iPTeKGpfUt8iFXaKfj90fIl4jyn58B9P8STSXEaag+Ley0UtE+FQ1FnJezOWvitZn7GslUS/b9keBShAAQpQgAIUoEDmCGRM8ST44aK4D1WRvhf6IbS4Akq0e0EULUAU9yFAyYeS4vqtxteKFkGC41VaPIlnLPGMR8l1gx/slMyrkg/Qsf7oiLZ4omRsJdnFst7V6F809iW5KlmD0VwnXAEunsJi0fd8ST+HMulnTTRjVTLPsb73eB4FKEABClCAAhSgAAWUCLB4kp90E+7DTUnFg3AfTsPhx3KtaD68KvlgHWshoOh5ka4Vb7+L+4BV3G/4lfQrXFtF5yua9pS80SIdE82Hw2hMlRQdlKyFaK6p9Filx0WyK+77ar/Hor1mSf2JxkDJPIVbx0qvpfS4eAqb4Qon0bxPY1kbPIcCFKAABShAAQpQgAKxCGRU8ST0L/vhPhzH++GhaLGluImJdPdG0Q8m8fYpUcWASMWSRPc7GYon0X5oFccXfSm5ayHcOim6pqK526m4/oj2lKzBaD/klvSBOtoPxNGYxzO+WIosJf2gLek9luk/a8KtCaU/16JZD7H8h5DnUIACFKAABShAAQpQIJIAiyf5QkU/RIWDi3TLfaQPnLF8YFP6IaOkDypqFk/CFUxK+mAbNIrFMjiWcI5KvUo6rrhrRHozxfN9JUWp0HUV7/pUugYjreXi1lu89pEKMEoKSUrHF8txiS6exDuXSosTasyL0nUb7n0WzfiLHhupKBnPe5LnUoACFKAABShAAQpQIFQg44onSooL0fyWM9KH7+KWWywf2JR+8FEyvmg+nBbtv5J+KB1fvG2HjiOa4pCS/gWLPuE2j03kj5Jo1pHS9alkrpSuBaVtRWpPiX2kNqIt6Cjtu9LjlBZPlLwXlc6l0gJJuPeU0vEpPU7J+CLNVTTjj/SzNJHvR7ZFAQpQgAIUoAAFKECBogIsnuSLKP1Qp/QDv9IPIIk+TukHmlg/tCjpb6ItlRRJ1CieKL0rJhE/VpS4RvogqnRtFl0jStZCovqndG0ksk9K+670OBZP5hUQFGem9GtKi2Th3l9K1kki3p9sgwIUoAAFKEABClCAAhlZPClu2pV++FZ6XLgihvhe6H4Tof8e7gOy0g8liT4u1CvShxXx/aLjKemcaCzDfdBS2n5xbcRzbiJ/fChxVVLMUWKqdI7iKXQoWYPxFiuieY8p3SOmpH4X9x6NplgV7j2kdA1G61V0noub93CGsSZQKZl7JT9TlKy/SO+bRL5H2RYFKEABClCAAhSgQGYLJG3x5MYde0Jm5vnR38X21W9HbKu448TXir6Kayv0uKLfL9qG+H7otYL/v7jjiuu0kuNKGkukvovrRbJS4qmmZUljKKnfkbxKGk+0X4+4wCIcEItrLOszOMdK5ijcWg79Xjir0GEX1164eYu0FoNtK32PlfR+ivY9W9JUKplDca4S+5Lei+nysyaSeXHjV7re430v8nwKUIACFKAABSiQ6gK1KltSfQhJ2f+0L54kpTo7RQEKUIACFKAABShAAQpQgAIJFVD6y6yEXjQJG2PxRJ1JYfFEHdeoWo10d0RUjfFgClCAAhSgAAUoQAEKUIACGSjA4klg0lk8UWfxs3iijqviVqN5xEZxozyQAhSgAAUoQAEKUIACFKBAhgmweMLiiZpLnsWTBOqWtB9BuDtLElE8CbcPQgKHx6YoQAEKUIACFKAABShAAQqUmkCkO/TD7YlW3N6SSvfUCw4wVT9n8c4TdZYoiycJci1aBAl9s0azUaboTjQV05Kum6BhsRkKUIACFKAABShAAQpQgAJJIRD62SfSL6GDhQ8lQQfFDS6VP2elY/EkGVIWWTxJ0I+BaNJZwhVHoimcRFtoSdBQ2QwFKEABClCAAhSgAAUoQIFSF4i2eBLtL7FDBxTt57JSxwhzwXQrnojCiXid3j2vTJlZPEkQf7zFk+Iqo0q6lspvaiXj4zEUoAAFKEABClCAAhSgQGYKKHksp6SCR6Q7UyKJpvLnrHQqngTvOOGdJ2FW7I079kjrOam+H0/xJJ43ZjznJhUgO0MBClCAAhSgAAUoQAEKUCBfIFLxI97vR4JO5c9Z6VI8CS2YsHiSxsUTpXuexPumTOVn8SL9wOL3KUABClCAAhSgAAUoQIHMFIi2OFL0Tv5I50dSTeXPWWVRPPn0008h/on11a5dO4h/gq+ixRIWT9KoeCKGEnpbWdGNiUKHGu57weOi2Qm6pOvGunB5HgUoQAEKUIACFKAABShAgbIWCPfYTnGfv4ruiVK0/9F8xgr3+a6sXSJdvyyKJwsWLJDFk9ACSKR+Br9/8uRJtG3bFtOmTStUPCnp/LLa+4R7niidUR5HAQpQgAIUoAAFKEABClCAAikhEO8d/ikxyBI6WVbFE9Gd0AKIUsOFCxfC7/eHPZd3noTRTLU9T5QujGiOK67SGnp+tJXTaK7NYylAAQpQgAIUoAAFKEABCqSqQKSE03DjSvXPWSyeqLNqeeeJOq5slQIUoAAFKEABClCAAhSgAAUoUOoCLJ6oQ87iiTqubJUCFKAABShAAQpQgAIUoAAFKFDqAulYPCl1xGIuyOJJMswC+0ABClCAAhSgAAUoQAEKUIACFEiAAIsnCUBk8UQdxES0qtVqoNNo4PX54PcD/kQ0yjYoQAEKUIACFKAABShAAQpkoIBWA4jPWD4/4BP/k0EvFk/UmWzeeaKOa8RWxRvZYtRBr9NAJ97ZoS9RRPH64Pb4YHd5ZTGFLwpQgAIUoAAFKEABClCAAhQoXkCjAcxGHQw6rfyMVfTl9fnh9vrhcHnTvpjC4ok67xIWT9RxDduq1ayH2aAtdIzT48ON+3bUqWSRb/jQl93plUUUvihAAQpQgAIUoAAFKEABClCgsID4pbTFpCv0RbfXh6/u2VGrogUmfeHPV6KAYnOm7+crFk/UeYeweKKOa4mtlrMaYMivhF67a8OH577B5Vt5uH7fLs8RN6HUfcqKxlWzMahVDVQtZ5Jfd7p9yHN4Srm3vBwFKEABClCAAhSgAAUoQIHkFci26GHML47cfuTEltM3cfl2Lr68a5OP7IiX+AV1o6pZeK5FDfn/xUvc5f/Inp6fr1g8UWe9sniijmuxrZaz6uVdJT6/H5tOfo31n96AuH2spJeokI7vUg99m1dlAaUU54mXogAFKEABClCAAhSgAAWSXyC0cLLz3C2sOPIlXB5fiR0X2yWMaF8bg9vUhHjMRzzG88jmTv6BRtlDFk+iBFN4eEKLJ6365hS67Ond8xR1Q5xX9NgbdwJ3YqTLy2rSw2zUQjye8+bWc7h0O0/x0NrVrYgf9m8q3+Di7hNxFwpfFKAABShAAQpQgAIUoAAFMlVAbIMgtkMQm8H+aecFnPzqgWKKxtWy8ZOBzeXjPA6XDzZnet2BwuKJ4qUQ1YEJK54UVwAp7muhvQsttqRz8URUOCtkGeTQF+z/ArvP345qksTBIzrUxrB2teR593NdBbegRd0QT6AABShAAQpQgAIUoAAFKJDCAlqNBhWyDRDbwr5/4gbeP3E96tH0e7oapnavL897kOcO+0RA1I2X8QksnqgzAWVaPAkOKd3vPCln0cOg1+LM1w/x5tbzMc2kSOf51dCWqPeUlfufxCTIkyhAAQpQgAIUoAAFKECBdBDIMuthMmgh9pD8zcYzMafn/OOg5mhRszzcHj8e2dPn8R0WT9RZ5SyeqONa0Kp41KaS2PTV78cft5zDuZuPYr7iM40rY1avRnLPlPu5T765NffuwnjyBPRnz8Ddpi1cPZ4V4eYxX48nUoACFKAABShAAQpQgAIUKDUBrxfGA3thOHUSnhYt4WrbHv5KTz1x+UrZRrmlwTsfXcKBy3dj7l7LWuXl4zuisXuPXPD7S96PMuaLlMGJLJ6og87iiTquBa2KnZ/FRkZiY9jvLT4GEZkV66uixYC3xrcHnE7YjhyH9rPPoD97GoYz4p/PoL19C46BL+Lhv/wWnuYtYr0Mz6MABShAAQpQgAIUoAAFKFBmAvrzZ1H+17+AedsH8FWtBnfL1nC3bAVPi1bwtWkDa6f2gMmEf1h+Ag/iuGNEhHn8ZXJHiG0Wch0euNJkb0kWT9RZuiyeqONa0KrVpIPZqMP5bx7hPz44F93V/H5Uv30dda9fQr3rF1Hv+iV0fPAV9FcuAb7CRRhX56548Ie34G7fMbpr8GgKUIACFKAABShAAQpQgAJJKGA4cggVfvFTGI8cKtw7rRaeho1xrEIdXKvdBNdqN8aXtRvjm6q15V0k0bzeGNwCTaplw+70wu7yRnNq0h7L4ok6U8PiiTquTxRPNn76NdYc/yrs1aqdOoou5w6i9qPbqPvNNVkwMbhdYc9xt2mHh7/6Nzj7PafySNg8BShAAQpQgAIUoAAFKECB0hcwbd+CCv/2K+jPfBb+s5HBiKt1muKranVxvVxVHG7RHbdah//l8uhOdTCkTU1ZOBEFlHR4sXiiziyWavGkpPSddN4w1mLUwWLSYde5W1h44GrYWTTev4vX//JTtLl6OuJse5s0xcOf/wr24aOirq5GbJwHUIACFKAABShAAQpQgAIUSCYBvx+WtatQ4Q+/gfbypYg9O1W/Fd78wX/CXb5S2GOn92iAPs2rwub0wsE7TyK6lnTAggUL5LemTZsWdRsLFy6U+83Ecm7UF4vjhIQVT0QfQqOHxb8XjR8uWiQpenzoOTfu2OMYVvKcKnaBFrtBX7qdh3/fdCZix7ReD7439zd45vD24o81GuH52T/h3o9+Crc/ulvSIl6cB1CAAhSgAAUoQAEKUIACFEhiAQN8qPTWH6B/84+Aq/i79Pd2HYi3c34Jn04fcSS/HNoSDatkIc/hkamm6fDinSfqzGJCiyeJ7GK6FE/0Og3KWw3w+Pz4zsIjInQn8svvx2vzf4ve+zeXeKy/XDk4e/aGbUoOnH36wW+xRm6XR1CAAhSgAAUoQAEKUIACFEgxAY3dBtOeXbAsmgfz3o+hefSwxBHsfHY43pvyM0V354vtUf42tTP0Wg0e5LllyEc6vFg8UWcWWTxRx7VQqxWzjdBqgAX7v8Du87cVX3H82rcxfEvg9qfgy9++AzwjRkIzfx70X1yREcgijtjdvAXsYybAPnI0vPUaKL4GD6QABShAAQpQgAIUoAAFKJBsArprX8CydjUsq5bBcP5sIDBDo4GnQUP4p+dA//5aaI4fL9TtdYNzsGL4dxQPpf/T1TCle32Imsn93PB7TSpuNAkOZPFEnUlg8UQd10KtirQdkbrj8Pjwy7WncCdP+Rtz4K5VyFn2X4Xae7h4JXIHDYHGlgfzB5tgXTgXxqOHoLEHHnXyPVUZjv7PwT5pOlw9esJvMJTCKHkJClCAAhSgAAUoQAEKUIACsQlo3G4Y930Cy9IFMO/cAe3dO7Ihv8UCV6eusE2dAceLQ+C3ZiF7ywaUnzK+0IXmTXgd2/qNUXzxyllG/G5UG4i4YpvDA0eaPLIjAFg8UbwMojqQxZOouGI/OHj3ydmvH+I/t56PqqF+Bz7AK/P+LXCXCQBP46a4te8YoNMVasfw2UlkzXsPpm0fQHfjeuCHjcEAd9v2sE2cBseQl2ROOl8UoAAFKEABClCAAhSgAAXKWkB7+xYsm9bDsnQhDJ8eh8bjkV3y1qoNx8AXYcuZBXfrtoW76fWi2jMdob90IfB1rRbvTP9n7O4+OKrh/OzFp9G8erm0u+uExZOolkFUB7N4EhVX7AfrdBpUsAbuADn11QPM2XsFD+zuiA1WyTbiO32aoOnebTBOmQS4A+fcf+vPsE2bWeL52nv3YFmzApYVS2A4eQKikit/ENWsBfugwXCMnwxXpy7yhw1fFKAABShAAQpQgAIUoAAFVBfw+WA8ehjm5Yth2bIZups35CWDv/C1j58M+6hx8FWsWGJXrPNno+Lrfxf4vsEA14pV+LxzH7z78WXcfuSMOITyFj1e7d0YLWuWl8em014nwcHzzpOIyyCmA1g8iYkttpMMeg3KWQIFFJvLi3n7vsCRL+6W2NhzLapjbOc68lYy8XJs/RAVxo+Qj+eIO0huHj8HmM2ROyN+SB05COvsv8G8eye0d74N/JAymeHq0g22aTPg7D8w7A+pyBfhERSgAAUoQAEKUIACFKAABQoLaO/fh2nnNlgXzIXx8EFonA55gK9yFTj69odt1mvysRwlv9TV5OWheudWEHesiMd57i9fC8ug52R7Lo8Pyw5fC7vHZPdGleUeJ1Zj4A7+XLtHnpduLxZP1JlRFk/UcS2xVYNei3KWx5FZ92wuXPk2T0YZX79nR73KFjSpmo3G1bKRZQwc5/P78cjmkbs/G44dQZVRQ6DJfYSHb/wLcn/8s6hHoPvmJixLFsicdLn5ktcb2HypfkM4ho2Efcx4uFu2jrpdnkABClCAAhSgAAUoQAEKUMBw+hQsq1fAvH4t9FfzQy50ukDIxcgxsE+aBm/1GlFDlfvP36Hcf/wW/goV8e3K9XB37Ay9LvD5SiTniFee04OLt3Nx6VYurt21oU4lKxrnf74qbw58vhK7ITyye+Dxpl/hRIyPxZOol5aiE1g8UcSU2INE8o7FpIdJVDzDZBeLHU5E1rjd4UFoaJb+zGeoMnqo3DD25onz8Fd6KuYOyo2ZPtkj70ox7f0Y2vzYL192Nlw9+8A2lVHIMePyRApQgAIUoAAFKEABCmSAgIwS3r0T1kXzYdz7EbS5j+SofeXLw/lML9hmfgeuXn3iCrLQ3LuLGu2byw1jv12/FZ6mzQtkReHEKj5fGSJsSaDRwOnywub0hPsYlvIzxuKJOlPI4ok6ropaFcVRvV4rH8sRW4+IN71I4BJ3mni84h9fiW9q3bWrqPLS83AMGYYHv3tT0fWUHKS/fBHWhfNg3vg+9F9cLhyFPHoc7KPGMgpZCSSPoQAFKEABClCAAhSgQBoLyCjhNSvlHSaFooQbNoJjyHD5S1hPoyYJE6jw0x/BvGMrvl23Bd569YttV3yeEp+tdFoNtPn/+P1+eQe/1+uHO8znq4R1NAkaYvFEnUlg8UQd11JpVXvza/kIz51la0v8ARJPR2QU8pb8KOQjRaKQ+4ko5GlwPfNsXBXkePrHcylAAQpQgAIUoAAFKECB0hEoiBJePB/m3R8WjhLuHNhH0TFosLwzJNEv8YvjypNG49u1m5keqgCXxRMFSDEcwuJJDGjJdIrIP7cumofcH76uereKjULW6+Fu2wH2iVNgHzqcP8xUnwVegAIUoAAFKEABClCAAqUjIPZKNG/eEIgSFgmeIkpYo5EJnqJQIqOEW7VRvTPl/usPyJ31mtzrhK/IAiyeRDaK5QgWT2JRS7JzNI8ewm+2yKiu0nqJXbMta1fCsmwRDCc/hcbtkpeWP0gHvgj7hCmMQi6tyeB1KEABClCAAhSgAAUokAgBGSV8CJbli2GWUcJfy1b9RiPcbdrJv+PbR44t3ZROlwsalwv+7OxEjDAj2mDxRJ1pZvFEHdfMajX/h6yMQt71YZEo5K6wTZvJKOTMWhEcLQUoQAEKUIACFKBAigjIKOEPt8G6cA6Mhw89jhKuUjUQJfzydxRHCafIkNO+myyeqDPFLJ6o45rRrcoo5KWLYFmTv3lUQRRyg0AU8ujxpXJ7X0ZPAgdPAQpQgAIUoAAFKECBEgRklPCq5TBvEFHCXwRCIkSU8NMiSnicfCQ/lihhgieHAIsn6swDiyfquLLVfAG5sdTej2B9768w7fsY2ocP5XfEbXfOnr1hm5IDZ9/+8FusNKMABShAAQpQgAIUoAAFVBAQQRCmPbtgXTgXpr0fQ5OXK69SECU86zW4evZmEIQK9mXRJIsn6qizeKKOK1stQUBGIS+aH4hCvnLpcRRys6fhGD0OttHjGIXM1UMBClCAAhSgAAUoQIE4BUSUsHX1CphFlPDn5wCfD9Bq4WnQCI6XRiBv+kz+vTtO42Q9ncUTdWaGxRN1XNmqAgEZhbz1g8fPV9ptgQr4U0/B0fc52CdPZxSyAkceQgEKUIACFKAABShAgcAd3x/DsmQBzLt2QHvvrkTxWyxwdRFRwjNlsIMaUcLUTy4BFk/UmQ8WT9RxZasxCIgoZOv8OTBv2wzdjevyrhS/iEJu014+d+kYMozPXsbgylMoQIHECzw/+rvYvvrtxDfMFilAAQpQgAJRCMgo4Y3vw7JsMQynQqKEa9WGY6CIEn6Zew1G4Zkuh7J4os5MsniijitbjVNARiGvW5UfhXxCxpOJl7dGTTgGBaOQu8pbD/miAAUoUNoCLJ6UtjivRwEKUIACUiAYJbx0EczbPigcJdy2PezjJ5d+lDCnJukEWDxRZ0pYPFHHla0mUqAgCvkdmHd/CO23t2XrfpMJrs6BWxCdAwaWbt58IsfHtihAgaQUEAWS0FfwTpOiXxfHiO8FCyqh34/27pR4zk1KRHaKAhSgAAXiFiiIEl4wG8YjIkrYGaijiCjhfgNgm/kqo4TjVk6vBlg8UWc+WTxRx5Wtqiggo5CXiSjklTCcOwOERiEPHQH72Am8PVFFfzZNgUwVCL3bpLg7T4KFj9CCSTR3qBQ9NppzM3VOOG4KUIAC6Sogo4RXLoN5wzror4VGCbeEffQ4eYcJo4TTdfbjHxeLJ/EbFtcCiyfquLLVUhIIboxlnf1XGbumffhAXtmfJaKQe8E2dQacffpxY6xSmg9ehgLpLKCkeFL0TpNoCiDRHJvOzhwbBShAgUwUkFHCu3fCumhekSjhCoG/0876LoMUMnFhxDhmFk9ihItwGosn6riy1TISEJFsWQvmBKr0l0OjkJvDMWocbGPGM5KtjOaGl6VAqgmU9HiOGEdJd56weJJqs8z+UoACFCg7Af3li7CsWw3zGhElfP5xlHDD/CjhaYwSLrvZSe0rs3iizvyxeKKOK1tNAgEZhbxtC6wL5sB4+CA0wSjkSiIKeQDsU3JYwU+CeWIXKJCMApGKI5G+HxxTNHeTRHNsMpqxTxSgAAUoEF6gIEp48TyYd+98HCVstcLZpTvsU2fIYAS/xUpKCsQlwOJJXHwlnsziiTqubDUJBcSzozIKeeumIlHI7WCfMAWOocP57GgSzhu7RIGyEIhUHIn0/UQUT1hMKYuZ5zUpQAEKJFZARglvWBdIkPzsJDQeD6DRwCt1AoukAAAgAElEQVSihF8YIoMP3K3aJPaibC3jBVg8UWcJsHiijitbTXIBGYX8/urAf8g+PV44Cnngi7BPnMJdy5N8Dtk9CqgtEO6xHXHtosk4kY5X0l+m7ShR4jEUoAAFklggGCW8ZGEgSvibm7KzfqMR7nYd5N8x7cNGMyUyiacwHbrG4ok6s8jiiTqubDWVBIJRyHPfhXnnjsJRyJ26wDbtZTifG8T/yKXSnLKvFCgDAd4pUgbovCQFKECBJBCQUcI7tgYeFT8aEiVctVogSniGiBLuAmi1SdBbdiETBFg8UWeWWTxRx5WtprCAjEJesQSWVcsLRyHXqw+HiEIeN5G3V6bw/LLrFFBLIFzxpLi7UkL7UXSjWbX6yHYpQAEKUCAxAuIRHOvKpTBtfB/6a1cBvx/Q6eBu0UpGCdsmTIGvarXEXIytUCBKARZPogRTeDiLJwqheFhmCsiNvfZ9AhmF/MlHhaOQn3lWPqfKKOTMXBscNQUoQAEKUIACmSNQECW8cA5M+/ZCk5crB++rIKKEe8P28msMIsic5ZD0I2XxRJ0pYvFEHVe2mqYCMgp54VyY16+F/srlgkg5d1MRhTwWtrETGIWcpnPPYVGAAhSgAAUokFkCMkp4zUqY166E4cLnIVHCjeEYNgJ5U2fw732ZtSRSZrQsnqgzVSyeqOPKVjNAQP4GYsc2ZM1/D8ZDoVHIlQJRyJNz4OrZC36DIQM0OEQKUIACFKAABSiQ2gIFUcKLRJTwh9DevycH5M+PErblBPbBY5Rwas9zJvSexRN1ZpnFE3Vc2WoGChREIW/bDN31r+Szr369Hu7WIgp5EhwvjWQUcgauCw6ZAhSgAAUoQIHkFQhECa+FZdliGD87CQSjhGvXgWPQYNimvwx3y9bJOwD2jALFCLB4os6yYPFEHVe2muECYtd18R9i65IFhaOQq9eA4/kXYJ88jVHIGb5GOPz0EtDpNDDqtBB/6rSBf/x+P3x+wOvzw+3xweXxyf0E+aIABShAgTIUECmLRw7CIqKEt28pHCXcvqPc6NUxbBRTFstwinjp+AXSpXjSqm9OIYzTu+fFjxNHCyyexIHHUymgSEBGIR+Gde67MO3aAd3tW/I0v8kkY+tsU2fC+fwL/I+0IkweRIHkEtBogCyzHkZ95PhJUTdxOL2wu7zJNQj2hgIUoECaC2jv3YN5xxZYFsyF8dhhaJxOOWJv1Wpw9n8etpxZjBJO8zWQacNLh+KJKJwULZYU97XSnFsWT0pTm9eiACB/w2FZsRSW1cthOHsa8HoBjQYeEYU8ZHggCrl1W1pRgAJJLiDuMiln0UMrKigAzt18hAvfPMKl27m4eDsP2SYd6lfOQrNq2WhTpyKqlTPJ49xeH3LtHt6FkuTzy+5RgAKpLSCjhJcvgWnT+9B/eS0QJSwep5ZRwuNhGz+JUcKpPcXsfRiBdCieFDc8Fk9KmPQbd+x8Q1Ag7QUKRSHv/QjaBw/kmP1ZWXCKKGRxV0rf/vBbs9LeggOkQCoJiMdyylsNou6Jb3NdWLj/C5y6Hnj/FvfSajUY1KoGhrerJe9S8Xj9eCQLKHyOJ5XmnX2lAAWSV6AgSnjBHJj2fwJNXp7srIwSfrZPIEq4R09u5J+8U8ieJVCAxZMEYoY0xTtP1HFlqxSISUBEIVsXzoNlw1roL18KiUJuBsfIsbCPGgtPoyYxtc2TKECBxAhoNBpUyDJAqwF2nruF5Ye+hNvnU9R4RYsBfzegKRpWyYLL7UOuw6PoPB5EAQpQgAJPCugvXYBl7SqY16yE4WJIlHCjxrAPGwXblOmMEubCyUiBdCqehO57wj1PSljOvPMkI9/nHHRoZdNug2n7VljFb1AO7YfGZgv8BqViJTj69Id96gxGIXPFUKAMBLItgT1OvriTh3/beCbqx2+qljPht8Nbw6DXysd3xEayfFGAAhSgQGQBjcsF496PYVksooR3Fo4S7tpDJuM4nxvIKOHIlDwizQXSqXgSOlV8bIfFkzR/63J4iRKQUcgL58K8ZVPhKORWbWCfMFnuDO+tXiNRl2M7FKBAMQJ6XeBxHZGe86v1p/HNQ0dMTv2froYp3evLNJ77ua6Y2uBJFKAABTJBQEYJv78GluWLYTx9qiBK2FO7LpwvDoFt6gxGCWfCQuAYoxJg8SQqLsUH87EdxVQ8kALJIyCjkDeKKOSFMJw4BvGbGPESxRNGISfPPLEn6SdgNethNmhx5Iu7+MvuSzEPUOyV8tcpnWDQafHI5obby71PYsbkiRSgQHoJBKOEFy8IRAnf+kaOz280wd2+A2yTpsExdARTCtNr1jmaBAukQ/GEaTtRLAo+thMFFg/NbIH8KGTLvPdg3rm9cBRyxy6wT82B4/kX4atUKbOdOHoKJECgYrZR7nWy5NA17DgT+At9rK+fDGqOljXLw+HywuZkfHGsjjyPAhRIfQEZJbz9A1gWiijhI09GCc94Ba6OnQFt5Fj41NfgCCgQv0A6FE+EQuh+J+LfuedJCWuDxZP43zRsITMFtLdvwbpiCSyrlsNwRkQhewJRyHXrwTlkuIzmYxRyZq4Njjp+gafKGWUjv95wBlfvBJIcYn0Na1cLIzrUlnediLtP+KIABSiQSQKGU5/CumJp8VHCYybANm4io4QzaUFwrAkVSJfiSUJREtAYH9tJACKboECyChREIc95B6ZP9kD74L7sqoxC7tETtmkvMwo5WSeP/Uo6AfGoTaVsI9xeH15bdDTsRrEurwtGXaDQUtKrRc1y+MdBT8Pr8+NBHosnSTfh7BAFKJBQARElbN71ISwL58C0by/Ev4uXr2JFOHuKKOHvMEo4oeJsLJMFWDxRZ/ZZPFHHla1SICkFZBTy4gWwvL8G+ssXH0chN2kaiEIePY5RyEk5c+xUMghoNRpUzDbA6fHhu4uOhu3SA+d9fH73LLrU7FHicU2rZ+OfXmzB4kkyTC77QAEKqCIgo4RXr4B53erCUcKNm8D+0khGCauizkYpALB4os4qYPFEHVe2SoGkF9CIKOSdO2Cd9y5MBw8U+g1QIAp5JqOQk34W2cHSFgg+tvPzNSdx66Ez7OUv3vsceq0ODSo0Lva451pUx6Ru9fjYTmlPIq9HAQqoJhCMEhbpgKaPRJRw/h2v1iw4u/WAbcYrcPYbwChh1WaADVMgIMDiiTorgcUTdVzZKgVSTsBw5rNAFPIHIgr5S8hnEvR6uEQU8vhJcAwfzSjklJtVdjjRAhWyDNBpNTJpRyTuRHoduPEJWldth2xDuScOffnZhujZpArsLi/s3DA2EiW/TwEKJKmA7usbMK9fI/dbM5z+7HGUcJ26cL4wFLZpM+Bu0SpJe89uUSA9BVg8UWdeWTxRx5WtUiClBWQU8qb3YV2yAIbjIgo58Bt2b7Xqj6OQO3fjrvcpPcvsfCwCVpMOZqMO524+xB+3nI/YhMNjx9GbB9GzTt9Cx5a36PGH0e1g1mvx0OaGh1HFES15AAUokCQCIuXv8AFYRJTwjq2Fo4Q7dAxECb80Er7y5ZOkw+wGBTJPgMUTdeacxRN1XNkqBdJHIBiFPH92IAr5ViCe1W80ydhAGYU8cDCjkNNnxjmSMAJardj3xCjvzJrzyRV8cvHbiF5fPrqK266TaP1UXxg1gTtQvt+vCTrVr8T9TiLq8QAKUCAZBGSU8NZNsCyaD+PxkChh8UuV/s/DnjOLUcLJMFHsAwXyBVg8UWcpsHiijitbpUDaCsgo5JXLYFm5FPqzp6HxeP7/4NZgFPIw2CZMZhRy2s4+ByYEssx6mAxa2Fwe/Hz1KeQ6xXug5Jfbn4c1NwejiqETBlR5C+3qVMTfP9dUnvDI7oHb4yMsBShAgaQTkFHCyxfDtGkD9F9eE782gV+vh6dFK9jHToRt7ARGCSfdrLFDFAgIsHiizkpg8UQdV7ZKgYwQkFHI+/fCOudvMH0cEoUsNoYTUcjTGYWcEQshwwapAVAh2witBrjwTS7e3nMJ922usAoX89bj8MPfY1T93+HtkT+GeGzH5fEh1x6+8JJhtBwuBShQhgIFUcLzZ8N0YF/hKOFefWGb8SqjhMtwfnhpCkQjwOJJNFrKj2XxRLkVj6QABSIIlBiF3LgpHKPGwj5qLDyNA79x54sCqSwgNo0Vm8eKl83lxeKDV7H/0p0Sh2TQaXHC8RN8fv8wTn3nLGpm15F7nYh9mfmiAAUoUFYC+osXYFmzApa1K6G/dBHw+eR+ZuK/1fbho2CbNBXeeg3Kqnu8LgUoEKMAiycxwkU4jcUTdVzZKgUyXuBxFPJ7MB3cX/g3WL37wzZ1RiAK2WjMeCsCpKaAKKCUs+qh1Yh7UYCLt3Jx5uuHuHw7Fxdv56GixYD6la1oWDkL7etVgk6Xh5Z/bYo65epi67gDQP55qTl69poCFEhFgUCU8EcyXc+0Zxe0D/KjhLPyo4RzGCWcivPKPlOgqACLJ+qsCRZP1HFlqxSgQBEBGYW8aB5MH2yE/qvQKOTWsI+dBMfIMYxC5qpJOQFR/7CaAnugRHqJm0w2n9+CMWuG4sdd/xmvd/3nSKfw+xSgAAXiFpBRwutWw7pyKcR/iyH2KtPk71X24lDYpuQwSjhuZTZAgeQSYPFEnflg8UQdV7ZKAQqEEZBRyJvXw7p4AQwnjkLjDIlCfm4Q7FOmw8UoZK6hFBLQ6TQw6rQQf4o7UsQ/fr8fPj9koo7YFFbscSIe03l503hsubIBOyYeQovKrVNolOwqBSiQEgLBKOFF82H+cNvjlDyTCa4OnWAXUcJDRzBKOCUmk52kQGwCLJ7E5hbprKiKJ6365hRq7/TueWHbD3d80e8FGwq2eeOOPVLf+X0KUCAdBMRf8o4dgUVEIYf+JU9GIXeCfUoOHIOGMAo5HeaaY5ACDo8D7ec0hEFrwNEZF2HU8dE1Lg0KUCA+ARklvGXj4yhhV2ATa6+IEh4wEPbpLzNKOD5ink2BlBJg8USd6VJcPBHFjqLFkuK+FuxmpOPDnSvaYPFEnQlnqxRIdgEZhbwqPwr5TGgUcl04hwyDbfxkuNu0S/ZhsH8UCCtw6tZxvLCiJ8Y0n4T/ff49alGAAhSIWkBGCS9bBPOmDdCJx2GDUcItxeOwE2EbM55RwlGr8gQKpIcAiyfqzCOLJ+q4slUKUCABAgVRyHPfCUQh378nW/WLKOTuz8jfpDn6DZD/zhcFUk3gXz75Kd478WesGrkVPWr3SrXus78UoEApC2jycmHe9SEsC4JRwjbZA1/FSnCKKOGZr8LV/Rn4DYEkML4oQIHMFWDxRJ25L9PiSdEhhd7ZwjtP1JlwtkqBVBaQUchLFsLy/hroL10oiFR0iyjkEaNhHzOeUcipPMEZ1nef34eu85rhvvM+juRcQEVzpQwT4HApQIFIAjJKWNyN+f7qwlHCTZrlRwlPg7duvUjN8PsUoECGCbB4os6El1nxpLjhhD7Kw+KJOhPOVimQLgIyCnn3TljnvgvTwX3Q5OXJofkqVISzd1/Ypr3MKOR0mew0HsfVB1fw7KI2aF+9MzaM2Z3GI+XQKEABJQIFUcLz58D08e7CUcLde8I24xU4+/SD32JV0hyPoQAFMlSAxRN1Jp7FE3Vc2SoFKFDKAjIKefH8QBTyl9cgY010erhbtYZt7EQ4Ro1lFHIpzwkvp0xg/sm/4Y2P/gF/en42RjefqOwkHkUBCqSNQCBKeBWsK/KjhL3ex1HCg1+CbfJ0RgmnzWxzIBQoHQEWT9RxZvFEHVe2SgEKlKGAjEL+YAMsi+fDeDw0CrkanAMGwTY1h1HIZTg/vPSTAi8sfwZnv/0M+6edQa1ydUhEAQqks4DXC+ORg7AunAeTSJm7fUuO1i+jhDvDPmU6HIOHMUo4ndcAx0YBlQVYPAkAFw2pCSb+RkoNLml6Elo8Ce1cLGk7fGxH5XcRm6dAJgoEo5AXzIZ5xzbobn0T+EuqiELu0An2ydPgePElRiFn4tpIojHfd9xDh7mNUCu7Nj6ZcgoajSaJeseuUIAC8QrIKOHQon4wSrh6jcJRwnzvx0vN8ylAAQAsnhRfOAkWTSIl/8ZdPAlWbkIbihRdHKzsBM8p7viS2uOeJ3zfU4ACaggEopCXw7xqGQynT0Hj8cjLeOrWg/PFobBNnMooZDXg2WZEgT3XdmDS+mH4x26/xI+6/FPE43kABSiQ3AKGkycCUcKbN0L31bVA4V4vHidtA4eIEh49jlHCyT2F7B0FUlaAxZMkKJ6U5uph8aQ0tXktCmSmQEEU8rx3Yfpod0gUshXObs/AnjOLUciZuTTKbNQzNo7F9i82Y/vEg2hRuXWZ9YMXpgAFohcoiBKe9x5Mh/ZDY8uPEq5UCc7e/WDLeYVRwtGz8gwKUCAGARZPChdPint8J5ZHdxQ/thPDnMV1CosncfHxZApQIAYBGYW8bLHcuM9w8XEUsqdRExmFbBs7gVHIMbjyFOUCDo8D7ec0gFFrxJEZF2HUGZWfzCMpQIFSFxBRwtaVS2EORgmLzcq1WribNINj5BjYJkxhlHCpzwovSAEKsHjC4gnfBRSgAAVKTUBGIe/ZFYhCPrA3JAq5Apy9+sI2fRajkEttNjLrQqduHccLK3pi3NNT8N/PvZNZg+doKZDkAo+jhGcH7lh8+ED22J+VDWf3Z2Cb+WogSthsSfKRsHsUoEA6C7B4Epjd4jaIjXW/E9Ee7zxJ53cNx0YBCiRMwHD2dCAKefOGwlHILVvBPm4i7CPGwFuzVsKux4YyW+CXH72OOSffxqqRW9Gjdq/MxuDoKVDGAiJK2LJ2JSwrRZTwaSA0SnjIMNgmiSjhlmXcS16eAhSgwGMBFk/UWQ0snqjjylYpQIE0FtA+fAjz5vWBKORjR6BxOuVovVWrwfncINimTIerS3d56zZfFIhFwOf3ocu8ZnjgvI/jMy+jnLF8LM3wHApQIBYBESV8+ACsi+Y/GSXcsUsgSliktJXn+zIWXp5DAQqoL8DiiTrGLJ6o48pWKUCBTBEIRiEvnAvzjq3QfXNTjtxvNAaikCdNg2PwMEYhZ8p6SOA4rz64gmcXtUHXmj2xetTWBLbMpihAgaIC2rt3YN68AdYlC2A4cQzi8RxZFBdRws8Pgn3qTLg6dgYYJczFQwEKpIAAiyeBSSqa/hs6ddwwNgUWMrtIAQqkt4CMQl6zEuYVSwpFIXvr1IVj8EuMQk7v6U/46OZ8+hf88uOf4M8D52Jks/EJb58NUiCTBWSU8NKFMH8gooS/DBS+RZRw67awj5sEu4gSrlwlk4k4dgpQIEUFWDx5Mqo4EVPJO08Socg2KEABChQjIKOQD+yDVUQh79n1OArZYoWzew/Yc16Bo29/udEgXxQoSWDA0i64eO88Dk0/j+pZNQlFAQrEKFAoSvjgfoiNwcXLJ6KE+/QPRAl36wG/wRDjFXgaBShAgeQQYPGExZPkWInsBQUoQIEYBXRfXgv8lnPdahgufg74fHJfFBmFPHwUbGMnwtOkaYyt87R0Fbhjv43O85qiXvmG2D3pGDR8bCBdp5rjUkFAf+HzQJTw+jXQX7oIBKOEmzYPRNAzSlgFdTZJAQqUtQCLJyyelPUa5PUpQAEKJExARiF/tBvWOe8UjkIuXwHO3iIK+WW4evaWe6fwRYE913Zg0vph+Hn3f8Xfdf4pQShAgRIExF4lpk/2wDJ/Nkwf7ykcJdyjZyBKuHdfRglzBVGAAmktwOIJiydpvcA5OApQILMFZBTykgWBKORrVwO/HdXp4G7ZGvbR4+Wz94xCzuw1Mm3DKOy8uhXbJx5Ei8qtMxuDo6dAiICMEl69ApZVyyB+lhZECderD+eQ4YG9phglzDVDAQpkkACLJ4HJFhvGxrIxbElLhXueZNCbiEOlAAVSQyAQhbwhJArZITsuo5D7Pw/btBmMQk6NqUxoL23uPHSc2xhGnRFHci7KP/miQEYKBKOEF8yFeed2aL+9LRn8JjNcnUSUcA4cLwxhlHBGLg4OmgIUEAIsnoRP2hFGsRRVWDzh+4sCFKBAMgv4/TAeOwKLiELevqVwFHL7jrBPmg7HEEYhJ/MUJrJvp24dxwsremJCi+n4rwFvJ7JptkWBpBaQUcKbRJTwfBhOHIfGnR8lXKPm4yjhDp0YJZzUs8jOUYACpSXA4ok60iyeqOPKVilAAQqoIiCjkNeKKOSlMHx2EhqPR15HRiG/ODRwe3rb9qpcm40mh8Abe36E+afewaqRW9Gjdq/k6BR7QQEVBAyfHn8cJXz9K3mFgijh8ZNgH8UoYRXY2SQFKJAGAiyeqDOJLJ6o48pWKUABCqgu8DgK+T2YPtoF7b27gQ8XIgq5m4hCngVHvwGMQlZ9Jkr3Aj6/D13mNcVD5wMcm3kZ5YzlS7cDvBoFVBKQUcI7d8Ay7z2YDokoYbu8kq/SU/lRwrMYJaySPZulAAXSS4DFk8fzKfY9CX3F8rhO8HwWT9LrfcLRUIACGSwgo5CXLYZ53SoYLpwPRCFrNPA0bgLHsFGwjZvEKOQ0WR9XH1xBz4Wt8Wzdflg2fGOajIrDyEQBGSW8YgnM69dCfzkkSriZiBIeA9v4yfDWrZeJNBwzBShAgZgFWDwJ0BW3YWw8m8iyeBLzkuSJFKAABZJXoCAKWfwGd98nEL/RFS+fiELu1Qe2nFmMQk7e6VPUs3eO/z/8eu/P8NcXFuGlJqMUncODKFDWAhqXE6ZPPgrcXfLJR4+jhLOz4ezxLGwzXmGUcFlPEq9PAQqkvACLJ+GTdmItoLB4kvJvDQ6AAhSgQGQBGYW8dBFMm94vHIXcoiXsYybIOGRGIUd2TLYj+i/pjEv3P8eh6edRPatmsnWP/aGAFJBRwquWwbJqOQznzoRECTeAc2h+lPDTLahFAQpQgAIJEmDxhMWTBC0lNkMBClAgswVEFLJp6yZYF86F8egRaJyBKGRflapwDBBRyDPh6twN0OkyGyoFRn/Hfhud5jZBgwqNsWvSUWg0mhToNbuY9gJer9yzxLJwXuEoYbMZro5dYJs6A85BgxklnPYLgQOkAAXKSoDFExZPymrt8boUoAAF0lcgNAp5x1bobn4tx+o3GuFqJ6KQp8AxdCR8lSqlr0GKj2z7lc3I2TQGbzzzW3y/449TfDTsfqoKiChhy8Z1sCxdxCjhVJ1E9psCFEgbARZPAlPJPU/SZklzIBSgAAWST0BEIVvWrYZlxRIYTokoZLfspLd2HTheGALb5OmMQk6+acPU9SOw69p27Jl8HI0rNUvCHrJLaSfg98Nw8gSsSxbAvGUTdAVRwga427SFfZyIEh4LX+UqaTd0DogCFKBAsguwePJ4hpi2k+yrlf2jAAUokAYCBVHI82fDtGdn4Sjkrt1hn/6yfMzHn5WdBqNN7SHY3HnoOLcxLHorDk4/B6POmNoDYu+TUkBGCX+4HZb5Ikr4QKEoYUffAfJngrP7M4Ben5T9Z6coQAEKZIoAiyfqzDQ3jFXHla1SgAIUSDsBGYUsIkXXroTh85Ao5EaNA1HI4yczCrkMZ/3UreN4YUVPTG45E3/s/+cy7AkvnU4C+s/PP44SvnIJ8PsBrRbuZk/LO0vsYycySjidJpxjoQAF0kKAxRN1ppHFE3Vc2SoFKECBtBbQOOwwfbQb1rnvwrj/E2hzg1HI5eF8to+MG3X17C33TuGr9AR+vvuHWPjZe1g/Zjc61ehaehfmldJGQEYJf7wnECW8V0QJP5Rj82WXg+uZ/CjhXn3gN1vSZswcCAUoQIF0E8jk4klwn5Oij+sUnePTu+dFPe0snkRNxhMoQAEKUKCogOHsGViWLYR543ror30R+O20Tgf30yIKebyMQ2YUsvrrxuPzoOv85shzPcKRGRdRzlhe/YvyCikvIPYrsaxeDsvqFYWjhOs3gGPocNgnTIWbUcIpP88cAAUokDkCmVw8UXOWWTxRU5dtU4ACFMhAgUAU8ub8KOTDhaOQ+4so5BlwdenOKGSV1sbVB1fQc2Fr9K43AEuGrVfpKmw2pQWCUcLz58C8ewe0334rh+MXUcKdu8I2ZQYcgwbDX65cSg+TnacABSiQqQIsnjCqOFPXPsdNAQpQIHUFglHIi+fBvG1LoShkd7sOsE2cKn+z7XuqcuqOMQl7/vax/8Fv972Bv76wCC81GZWEPWSXSltARglvWAfLkoUyJUfjdskuiDvCHM+/APuUHLg6dAI0mtLuGq9HAQpQgAIJFkiX4kk8STnFxRQHmcN9L9xU8M6TBC9UNkcBClCAAiULaO98C8u6VbAsW8woZJUXSv8lnXHp/uc4NP08qmfVVPlqbD7pBIJRwovnB6KEb1yXXfQbRJRwO9gnTIZ9+GhGCSfdxLFDFKAABeIXSIfiSXEFjmiKHiyexL+O2AIFKEABCiSJgIxCPrgflvmzYd79YaEoZFeXbrDliCjkgYxCjnG+7thvo+PcJmhYoTF2Tz72RCvPj/7uE1/bvvrtgq9F+n7wwKLHFW0j9N/FOeL4ol+LcYg8rYiA5tEjmD/cBsuCOTAdDokSfqoyHH37wz59FpzdejBKmCuHAhSgQJoLZHLxJNJGsWLqY9ksVpzHO0/S/I3D4VGAAhRIFQEZhbxyKcxrVhSOQm4oopBHBqKQmzZLleEkRT+3X9mMnE1j8Muev8drHf6+UJ+KK2KEfi3S90sqhIRrg4WTxC8LGSW8bBHMG9dBf+VyfpSwDu7mzWEfNQ72cZPgrV0n8RdmixSgAAUokLQC6VA8KQ43UXeexDpxLJ7EKsfzKEABClBANYFIUcj2nFkyEplRyJGnYNL7w/DRlx9iz+TjaFzpcfEpUnEklu8X7U2kYkzk3vOIogIFUcJz34Vp78fQPgqJEu7ZCzbx3mCUMBcOBShAgYwWSMfiSTSFE7Umn8UTtWTZLgUoQAEKJExARiEvF79dfx/6q0WikEePg33sREYhl6Btc+eh3ZwGKGcoh0M5n48A3QcAACAASURBVEOv1csjYymORFsMCR7PO07ieyvIKOFVywJRwufPAl6v3NjVU78hHC8Nh338FEYJx0fMsylAAQqklUA6FU+Cj+HE8qhNvPumPPELDL/f70/GlXLjjj0Zu8U+UYACFKBAGQvIKORtH+RHIR+CxuGQPfJVqQpHvwGwTX+ZUchF5ujozUMYtqovpraehT/0/VOpFk/ExbjHSZRvmtAo4V07IDZaFq9AlHA32KbNlAk5jBKO0pWHU4ACFMgQgXQpnsRztwk3jM2Qxc5hUoACFKCAQgERhXz8KCyL5sG8fQt0X98IfMgUiSIyCnkKHC+NZBQygH/c9X0sOT0X68fsRqcaXeWdJ0Vf0WwYq+RuEt55onAdA5BRwuvXwrI0GCXslid7a9aGY2B+lHD7jowSVk7KIylAAQpkrEA6FE/iKZyIiWfxJGOXPwdOAQpQgAJKBGQU8vurA1HIJz+FxpP/AbRWbTheGALb5OmyqJKJL4/Pg05zm8DhsePIjAsYNfFnYe8IiVQcifR9YRztYz4ZNS8iSvjT47CKwt+2DwpHCbdtD/t4ESU8ilHCGbUoOFgKUIACiRFIl+JJcRpKH99h8SQxa4mtUIACFKBABggURCEvEFHIO+Vv9sXLb7HIx3psU2fI3+j7s7IzQCMwxEv3PkefxR3Qr/5A3JxXI67iSdHiSBCRaTslLycZJbxjK6wLZsN4WDxyFnhE2SeihPs9B/u0mYwSzph3IwdKAQpQQD2BdCieJEKHe54kQpFtUIACFKBAxgnIKORVywJRyOfPAT5fYNNNEYU8dDhsE6dmRBTyn4++id/v/xXqnuyPA+9sLHEdKLmzJFhACW2k6KM/Rfc7UdpuuixQGSW8dGFgs+Mv8qOEdTq4mz0Ne3CzY0YJp8t0cxwUoAAFkkKAxZPH0xDccDb4FaV3rhQ3kUzbSYrlzU5QgAIUoEBpCgSjkC3zZwfiXnMfycv7ypeH65lesM18Fc5ne8NvNJVmt0rtWv2WdMKV+5dwcPpZVM+qWWrXzYQLBaOErXPegXGfiBLOX1vlysHZszcCMdu94TdbMoGDY6QABShAgTIQYPFEHXQWT9RxZasUoAAFKJBCAjIKecUSmDesg/7qFUAE0Ym7A5q3gH30eNjHpVcU8h37bXSc2wSNKjTBrslHU2imkrOrMkp4pYgSXg7D5+ceRwk3EFHCI2EbPxme5k8nZ+fZKwpQgAIUSDsBFk/UmVIWT9RxZasUoAAFKJCiAjIKWe5LMQfGIwcfRyFXrhKIQs6ZlRZRyNuvbEbOpjH4da8/Yla7H0ScLbvbBovBGvG4jDjA44Hp0H5Y5s+BebeIEs7fT8cs9tPJjxJ+bhCjhDNiMXCQFKAABZJPgMWTx3MSfGwn+LhOPCk+LJ4k31pnjyhAAQpQIFkEglHIi+cHElFCo5Dbtpf7pDiGpW4U8oR1Q7H3q93YPfkYGldqFlZ986X3Mbjx8GSZmVLvh4wSXieSnBbBcOpTiA2JxcsrkpwGDYZ90jS4GCVc6vPCC1KAAhSgwJMCLJ4ETIKFkqIFk1gLKCye8N1GAQpQgAIUUCggo5DXr4Fl6WIYTp0o/AF64GDYpubA3ba93Ig2FV42dx7azW6AcqbyODT9PPRafYnd/sG2GfjzwLmpMKzE9DE0Snjr5icKZ/aJU2F/aQSjhBOjzVYoQAEKUCCBAiyePC6chBZRgsQsniRwsbEpClCAAhSgQEQB8ejGgX2wLJwL864dhaOQO3eFbdrLKRGFfPTmIQxb1Rc5bb6Df+/z3yUOu/FfK+Pz79yCTqOLSJOqB8go4e1b8h/ZCokSzn9kS0YJd+0B6EsuMqXq2NlvClCAAhRIHwEWT1g8SZ/VzJFQgAIUoEDaCYgoZLFhqGW1iEI++zgKuUEjOF4akdRRyD/e+RqWn1mA9WN2o1ONrk/MzeV7F9BrcTscnHEaTSo1gbivxuf3y311xZ8erz9l51N//hysyxbBvHEd9F+EbhYsooTHwz5mAryMEk7Z+WXHKUABCmSiAIsngVkv7rGdWO86Ee3xsZ1MfDdxzBSgAAUooKqAjEL+eA8s896DqUhcratn76SLQvb4POg0twkcHjuOz7wMqyFL+hj0Wpj0Wmy6vA6T1ozD2nEb8ELjF5+wE6UTt9sHp9sLd5IXUmSU8Ee7YZ37bpEo4fJw9uwViBLu3TdtY6pVXfhsnAIUoAAFkkKAxZPH0xDcMDb4leDGsbFMFIsnsajxHApQgAIUoEAUAoZzZ/OjkNc+eXfDqHGwj58Mb81aUbSY+EMv3fscfRZ3wIAGL2Dx8DWwmvTQ6wJ7t/z249/g3z/5Db7X5F/wXPZkPHzoQvnyJlSqZEKNGllo0KBCQYc8Xh9sTh/En8nyklHCy5fAsnYlDOfPAT6v3JfG07ARHENHMEo4WSaK/aAABShAgYQIsHiSEMYnGmHxRB1XtkoBClCAAhQoVkBGIX+4DdYFs2E8XGRfjb4DYM95ObCvhq709xb50+H/wH8c/DVWjVmHIU2H4ssvH2LNmov4fzf/HtfL70ftrwfi6SuznhhX5coWdOtaE8OHN0Ht2tny+063D3kOT9msgmCU8Lz3YN698/F+NCJKuGt32Ka/DEf/5xklXDazw6tSgAIUoIDKAiyeqAPM4ok6rmyVAhSgAAUoEFkgGIW8ZEEgCvnGdXmO32CQqT3ijhT7iNHwPVU5cltxHqHVANkWAwYs6okzt8/i+77lOPJxrmx1X8cfwm6+iafut0GHM78Me6U+veti5szWEAUVsRdKrt0j90VR+yWTkESU8HKRhFQkSviFIbBNmgZ3uw4pk4SkthfbpwAFKECB9BVg8SQwt0Uf2Qmd8Vge32HxJH3fMxwZBShAAQqkmIAsAGxYB8vShTCcDIlCrlkLzoGDkTdthipRyKJwUiHLKBOWdx35DEM3d4f1YQN0O/8b+DQe7OoxSUqanVXQ8+hfIqpWKG/CG290Q6tWVeDzAw/z3IkvoIjC04ljsC6aB5MoPH19I6Tw1AH2SflRwqVQeIoIwgMoQAEKUIACpSjA4knhtJ1E0bN4kihJtkMBClCAAhRIpIB49OTgflgWzoF5Z0gUsnj0REYhz4Rj0IvwZwUek4n1pdFoUN6qh06rwc6d1/DWfx/B7UpHcLLFH9Hs8kxUyG2Cw23fKGi+34HF0PoMii73k9c7o2/fevD6/HiQ51Z0TriDZJTw1s2wLpoL4xHxyJNDHu4TUcL9n4N96gxGCcetzAYoQAEKUCDVBVg8YfEk1dcw+08BClCAAhSIWUBGIa9ZIeOQxQa08PkCm542aAjH0OGwTZwGT7PmYdv3+X3Yf+NjbLiwGtmGcmheuSU61mqLtjVa48qFPPz0p3sK7hA51vBN3Kt2FI2+GovL9ZcVtNvt+JvIttdTNA6dVovf//5ZtGxZRabwPLJFX0ARUcJZSxfAtHE99FdDo4Rb5EcJj2eUsKLZ4EEUoAAFKJApAiyesHiSKWud46QABShAAQqEFSiIQp4/G6a9H0H76JE83leuHFzP9ApEIffqU2LcrsvrwvxT7+BPR/4Ddx13oIEGVmcNWPJqI9tWH1l5dWB2Vcbxpn+E3+CEX/e46NHm3E9Q7W5XxTOUnW3E//15gNwDRex/4vKET+GRY/vkI1jn/A2mfXuhyQ2OrTycvXrDPu1lRgkr1ueBFKAABSiQiQIsnrB4konrnmOmAAUoQAEKRBSQUcgrl8C8fh30X1wGxAatOh3czZ6GY9RY2MZNKvbuDJ3RibcO/BFv7ftveBB4BCbSq/HVSWhwfUSkwwp9v3On6vjXf+0p9z+5n+t64lwRJWxdvhjmNSth+Px8SJRwYziGjZT9j3RXTVQd4sEUoAAFKECBNBZg8SQwuWLD2Fg2hi1paZTpnidFd78NHdiNO/Y0Xs4cGgUoQAEKUEAdAbkvSDAK+dBBiDs5xMtXuTIcffrDPuMVuS+IwWRAOYse587dxd+9sQ5X6q7Ejeo74dd4w3as5q1+aHnxu1F3/n//pz8aN66IR3YP3A5XYD8XESW8JyRK2GKBq0t32HJmwdHvOUYJR63MEyhAAQpQgAIAiyfhk3bEGomlqFJmxZPiqkChX2PxhG97ClCAAhSgQJwC+Yk0FhGFvHVzoShk77O94J84CX/5si42HHwgL2Qz38Sl+ktwq/KBEi9c8UELdDr966g7NrJnBbxa/So0y5ZCt/cTaNyBR4G8tevAIaKEJ05llHDUqjyBAhSgAAUo8KQAiyfqrAoWT9RxZasUoAAFKECBpBOQUcgb34cophjFprN5ufBDg89NtXGwaiccqNMdF8o3woOsy7jQYCHuVzjzxBiMrgrodeTdiGPTwI9mDy+j+5f70O3b42jq/AoacVZ2NlxPtwpECQ8dDh+jhCNa8gAKUIACFKBANAIsnkSjpfxYFk+UW/FIClCAAhSgQFoIiFjiCiYNvlzyAU786m10u3MC9Vy35NjuabNxuEIrHKzTA5ua6XG60SrkZn1RaNx9Ds6H3mt5wsLqsaPL7ePo/tU+dHlwGhV9efKYq8ZqOFi5Azr//nuoNXYQ7jt8cv8TvihAAQpQgAIUSLwAiycB06LbhIRK87GdxK87tkgBClCAAhRIOwGDXiv3O/nggyv4v78cl+OrYb+N7jcPoevXh9A192zBmE9YG+HP3apiadfLsFluy693OfkHlM9tJP+/xevA8Isb0PXWUbS1X5Zfc2n0OJ7dDIdqdsWBGl3wjbmq/Prf/7Ajnn++QWDfkwipO2mHzgFRgAIUoAAFSkmAxZPEbxYrpo53npTSAuZlKEABClCAAskiYDLqkGXSYc2aC5gz99QT3TL5XGh/5zN0v74f3e5+ikqehxhlmYlLvb/CuQ57UPfieDx9qQu0t29B++1tbHL8BTf1lXDoqXY4UOcZHKrSvtihvvpKWwwb1gR5Di+c7vAb0yaLFftBAQpQgAIUSDUBFk9YPEm1Ncv+UoACFKAABZJSwGLUwWLSYdmyc1i0+Ml9TYp2us29cziN6tBduwrfo5vY1+4r9LrQHt4q1eCrWhXV8Qg3LdUijnX6tFYYO7Y57E4v7C4WTyKC8QAKUIACFKBADAIsnrB4EsOy4SkUoAAFKEABChQVMBm0yDIXfmwn9BiDz42Odz+Te5d0vfspnvI8xBjTK3BVrQFf1WrY0+nPqGhvita3p0SF+/3vdcCLLzZEnsMDp9sX1bk8mAIUoAAFKEABZQIsnqRZ8URMe9ENXEI3bWFUsbI3Bo+iAAUoQAEKRCtgNGiRbdZj//4b+PffBWKJqzruoOfXB9Dt60Nol3cBRr9Hfv2kpREOVeuEdU2GwaEzya/tbf1jOMp/hcZXJ6HB9RGKL/+Lf+6B7t1rItfugYt7nih244EUoAAFKECBaARYPAloiXpDLBvDlmRdZnueRJp8Fk8iCfH7FKAABShAgdgE9DoNyhs1ePjBTuz5u/9FtzvHQ9J2snC4QmuZtnO4agfY9E+m6uzqPhk+rVtevOmV6aj39RBFHZk390VUqWLBQ5sbHi/jdhSh8SAKUIACFKBAlAIsnoRP2hGcsRRVWDyJciHycApQgAIUoECqCmjvfAvLpvWwLF0I49nTQG4uRAnjc1MdHKraEfvr9MCF8o3gh6bEIToNd/FJl9cKfV9JAaVunXJ4++3n5Xn3cl3ws3aSqsuI/aYABShAgSQXYPFEnQli8UQdV7ZKAQpQgAIUKHsBvx/GE8dgWbIA5q2bobtxXfbJbzDA16cvfGPHYc6dhli5+67ivt4rfxrHWv/6ieMjFVCGD2uMV15pJyOKRVQxXxSgAAUoQAEKqCPA4ok6riyeqOPKVilAAQpQgAJlIqB59Ajmndthnf8ejIcOQuOwy374nqoMR9/+sOfMgrNrD5gsJmSZdbh69SF+8IMd8g4UJa/r1bfjXON3iz20+eVZqHNz4BPf02o0+OvfnketmtmMKVaCzGMoQAEKUIACcQiwePIYL9w+q9ESs3gSrRiPpwAFKEABCiSZgP78OVhXLIF5/Vrov7gM+UyMVgd38+ZwjBoH27hJ8Nau80SvK2YbodUAf/rTMWzb/oWiUV1osADXam0s8djiCigvvtAQ3/9+B/j8wP1cl6Lr8CAKUIACFKAABWITYPEk4FbchrHxbCLL4kls65FnUYACFKAABcpMQNxNYvrkI1jmz5Z/ah89lH3xlSsHV49nYXv5O3D26gO/MZCOU9IrmLqTl+fC9773Ie7cDdylEu514uk/4M5Tx8IeE1pAqVrFgv/7v+dhteqR6/DAxYjiSMT8PgUoQAEKUCAuARZPwiftxFpAYfEkrmXJkylAAQpQgAKlI6C7/hUsq5bDsno5DOfPAl4voNHAU78hHEOHwzZpGjzNmkfdmXIWPQx6LS5evIfXX98Dr88Xto39Hf4eNsvX8hiNTw+/1oMKD5vhQfnPC5339KVXUO/2IPzv//ZDgwYVZNFEFE/4ogAFKEABClBAXQEWT1g8UXeFsXUKUIACFKBAMgl4PDAd3A/Lorkw79wBkZQjXn6zGa7O3WCbOgOOgS/CX65c3L2ukGWATqvB7t3X8OZ/HSmxPb/Gh13dJ0H8KV71rr+Ea7U2oMbVwaj7oBcu1V+GuxU/DZzv1+AfmvwBvxv3uowlFvHEfFGAAhSgAAUooL4Aiycsnqi/yngFClCAAhSgQBkKyCjhDetklLDh5Alo3IGCg7dmLTgHDkbe1By423WQd5wk8qXValDeqofY2PWzz77F7353EA8fOZ+4RJ7lBg50+JH8us5rxrNH/opDTX8Dt/EB+px8W379YdYlXGu0Et+UOwYNNPjL4HcwoskU+MSGJ3xRgAIUoAAFKKC6AIsnAWLueaL6UuMFKEABClCAAqUkEIwSXjwf5m0fFIoSdrdpB/uEKbCPGC2TctR+iY1jsy0G6HUafPutHQsWnMHOXVcLXfZ2pSM42eKP8msNvxyDRl+Ow5VqG3G5yQJ0P/4Wsux1MKB/fUyb1hJfes7hX/f8CtsubcGfBs7GqGYT1B4C26cABShAAQpQAACLJ4+XAdN2+JagAAUoQAEKpKiAjBL+cBus82fDeLhIlHC/AQVRwtDpymSEwT1QxMWvffkI69+/iIMHv8a9+w5crbUeFxssKrjrRO+1wmm4j0+6vIq++hzMnvw/qFUrW/bb5fEhz+HBqVsn8ObB32JYszEsoJTJjPKiFKAABSiQaQIsnqgz49wwVh1XtkoBClCAAhQoEDCcOwvLyqXFRAk/DfuocbCPm1hslHBZEYoUHotRD532cQ+uXn2In+z+ATbeWIIRlb6HafX/ARUrmmSxZMLOAbC7bTjx6mm5v4nd5YXbU3jj2dO3P0VVa3VUy6pRVsPidSlAAQpQgAIZIcDiiTrTzOKJOq5slQIUoAAFMlhARgl/vCcQJbxXRAk/khoySviZXrDNfFVRlHBZE4oUHpNBK9N4xC4rAxcPwMlvTuD89y+jgqlCQff+uP8P+Jfdv8DRmedRw1q3rLvN61OAAhSgAAUyWiDTiyfhoohjjSkWC4rFk4x+W3HwFKAABSiQKAHdl9dkjLBlzQoYzp97HCXcoBEcL42AbcKUmKKEE9W/eNsRe6G0fa8hctq+gp/1+AV8fj/8fsg/v7h3Fd0WPI2X230Pv+n1ZryX4vkUoAAFKEABCsQhkMnFEyXFESXHFMfP4kkci5KnUoACFKBABgsEo4QXzIF51w5o796RGH6LBa7OXWGb9jIcA1+APyuwB0iqv3Ldj9BlbjMcybmALOOTY+o4tzHgB47NvJTqQ2X/KUABClCAAiktwOLJvLDzx+JJSi9vdp4CFKAABVJBQEYJr18Ly9JFMJwKiRKuVRuOgYNhE1HCbdsnPEo4GWw+vXUMu65uxY+6/FOx3fnXj3+Kdz/9M47PuMx9TZJhwtgHClCAAhTIWAEWT1g8ydjFz4FTgAIUoEAZCYgo4eNHYVmyAOatm6H7+obsiN9gkEUSGSU8fFSpRAmXkUDBZXdc2YwetXsXe9eJOOjyvQvotbgdvt/xdbzxzL+VdXd5fQpQgAIUoEDGCrB4wuJJxi5+DpwCFKAABUpPQEYJb98C68I5+VHCDnlxX+UqcPQVUcIvw9m1B8oqSrj0JApfye6xw6K3hL1829n1YdaZcSjnfFl1k9elAAUoQAEKZLxAJhdPxORzw9iMfwsQgAIUoAAF1BKQUcLLF8O8cR30X1yB3AlVp4O7eYtAlPDYCUkVJayWQ7zt/nz3D7Hws/f46E68kDyfAhSgAAUoEIcAiyc5Uu/07sJ3oIiiSnFfV0rNDWOVSvE4ClCAAhRIG4GCKOF578G092Noc4NRwuXh6pkfJfxsb/iNprQZc2kM5Oydz/Dc0q54vesv8OOub5TGJXkNClCAAhSgAAWKCGR68STIESyWBP+9aDEl2oXD4km0YjyeAhSgAAVSUkBGCa8SUcLLA1HCPp/c2NXTsBEcQ0fANnEqPE2bpeTYkqnTzf9WHVWsVbF36mfJ1C32hQIUoAAFKJAxAiyeqDPVLJ6o48pWKUABClCgrAVElPCBfbCIKOHdHxaJEu4G27SZaRUlXNbcwev/aMerWHluET6b9RUqmZ9Klm6xHxSgAAUoQIGMEUi34kms0cKJnnAWTxItyvYoQAEKUKDMBGSU8PurYVm2GIaTn0Ljccu+eEWU8KDBsE1J3yjhMkMvcuGTt47hxRXP4p+f+Xd8r+M/JEu32A8KUIACFKBAxgikS/Ek9LGbeB+5ScTks3iSCEW2QQEKUIACZSMQjBJeNE8m5BSKEm7XIRAlPGxkRkQJl80EFH/VZn+rhprZtbFn8vFk6hb7QgEKUIACFMgIgXQpngQni3eeRFi2N+7YM2Jhc5AUoAAFKBCdgPbhQ5hElPCCOTAePQSNIyRKuP9zsE+bmZFRwtEpqnv0d7dOw/oLq3D+1W+QbSyn7sXYOgUoQAEKUIAChQRYPFFnQfDOE3Vc2SoFKEABCiRQwHD2zOMo4atfFI4SHjMe9rET4a1ZK4FXZFPxCBy9eRDDVvXDb3u/hRltX4unKZ5LAQpQgAIUoECUAiyeRAmm8HAWTxRC8TAKUIACFCg9ARkl/NFuWOe9B+M+ESWcKy/uK18ezp69YZ/xCpyMEi69CYnySn6/H03+VgUNKzbBjgkHozybh1OAAhSgAAUoEI8Aiyfx6JV8Losn6riyVQpQgAIUiFJARAlbVy6Fec1KGD4PjRJuDMdLI2CbMIVRwlGaluXhMzePw7bLm3DhtW9h0VvKsiu8NgUoQAEKUCCjBFg8eTzdwU1ngxvOxrN/CosnGfU24mApQAEKJI+Axu2G8eB+WObPhnnPzsJRwl26wzb9ZTieGwh/VnbydJo9USyw7/pHGLv2Bbw14G8Y32Kq4vN4IAUoQAEKUIAC8QmweBLwCxZKihZMYi2gsHgS37rk2RSgAAUoEIWAjBJetyoQJXzq5OMo4dp14HhhCGyTpsHdrkMULfLQZBUQj+40ersSWvx/7d0JsJTlvefxX+/nNKCALGoUieAKiBHFXUDcEIUoqyCLW0YrmarJWDeVzNybqsxNbnJnKqm5lVvXuLGKK4gaBXFFg7gEUVBEr4KKgiwqi9Db6dM9875NQ5+2T7/dffo5vX27yoraz/ssn+d9OTk/3/f99xqsZZNXVes0mRcCCCCAAAJ1J1Av4UlmqeL0JhVasjgzICE8qbtTnAUhgAACdShwqJTwXDU996w827+yF5n0+eyQxApLIteMp5RwHW69taTpfx2vV7e8qE23fyu/x1+nq2RZCCCAAAIIVJdAvYQnHVElPOmIHscigAACCHSKgF1KeMUyBR+YJ/+at+SKHiwl3Ku3IqMuU2jWzYqdc57k8XTKfBikcgKvbHlB054ap7uuWqhxAydUbiKMjAACCCCAQAMJEJ6kNjvXYzulPrJj9cdjOw10EbFUBBBAwJSAXUr44YVqeuYpeTNLCZ96usITJlNK2BR8lffbmmi1H9350dHn6IkJL1b5bJkeAggggAAC9SFAeHJ4H7Mf/Sn0sZ9cZwLhSX1cH6wCAQQQ6FSBQ6WE594r/+ur2pYSvmiEwrNvVfSiEUr6eVSjUzemCgezXhr75rbX9Mnt3/DoThXuD1NCAAEEEKg/AcITM3tKeGLGlV4RQACBuhOwSwk/+qCallqlhD+SEgnJ5VL8xAGKjLteocnTKCVcd7ve8QU9/9kyzX56ouZfs0SX9R/T8Q7pAQEEEEAAAQTyChCemDlBCE/MuNIrAgggUPMC6VLCwXn3KWCVEt79rb2mZHNQ0eHnKWyVEh59OaWEa36nzS4g1hrTgL/01HnHXqzHrltudjB6RwABBBBAAAE1aniSqzpPe6dDKY/vEJ5wcSGAAAIIHBKwSwkvXazmR9opJTx9llrOOBMxBIoSGL/4Ur2zY40+vWO3PG5eFFwUHo0RQAABBBAoUqBRw5NMpvZeDMsLY4s8mWiOAAIIIHBQwColvHaNmhfOVdMLKw6XEvb7FRt6lsLTblTkmuuU6NEDMgRKFnjq48W6Y8VMPTT+r7rk+NEl98OBCCCAAAIIIOAsQHhyuNJOLq1SAxTuPHE+92iBAAII1JVAqpTwMwounCv/22valhIefblCM26ilHBd7XjlFxOOh3Xy3b014vjRemDck5WfEDNAAAEEEECgjgUITwhP6vj0ZmkIIICAWQGrlHDwoYUKPPOkvFs+l5JJyeNRy2mnKzxxqsITpqj1mGPNToLeG1pgzKMXauPXG+xHd1wuV0NbsHgEEEAAAQRMChCeEJ6YPL/oGwEEEKgrgcxSwoHXV8m1f7+9vsQRRyp68QiFZt+q2IWXUEq4rna9uhfz8AfzdedLd2jJdc/pvB9cVN2TZXYIIIAAAgjUsADhSWrzcj2eU+ojO1Z/PLZTwxcFU0cAAQQyBexSwo8sA98OlgAAIABJREFUUtPSxfJ9nFlKeKAi4w+WEh54EmgIVERgf+w7nXrP0brih2M1Z+yjFZkDgyKAAAIIINAIAoQnh3c5uwJPKVV20r0RnjTC1cMaEUCgLgXsUsJvrFZw/v3fLyV87vkKz75VkVGjKSVcl7tfm4u67KHh+nTvJm26/ZvaXACzRgABBBBAoAYECE/MbBLhiRlXekUAAQSMCLh37VRw6WNqevQh+d5fL1c8bo/Tetzxioy5RqEbZlBK2Ig8nZZDYO66u/SPf7tTT01cqWFHDy9Hl/SBAAIIIIAAAlkChCdmTgnCEzOu9IoAAgiURyCzlPDzz8qzY7vdb9IqJXymVUp4liJjx1FKuDza9GJYwHp055R7+mrcSRN115ULDI9G9wgggAACCDSmAOHJ4X3nsZ3GvAZYNQIINIiAVUq4afnTan5gnvxrM0oJ9+6tyKVXKDTzJsXOPteulsMHgVoTuOSBM7X9wDb953/ZWWtTZ74IIIAAAgjUhADhSWqbeGFsTZyuTBIBBBAoTsC3cYOCDy5UYNlTWaWEBx0sJTyZUsLFkdK6SgX+Y+2f9LvV/6hnJ7+mIX1+VKWzZFoIIIAAAgjUrgDhCaWKa/fsZeYIIIBAloArHFLg1ZUKzr1XdinhAwfsFpQS5lSpd4HdkW81+L7jNOnUG/V/L7un3pfL+hBAAAEEEOh0AcITwpNOP+kYEAEEECingF1K+KGFanry8cOlhN1uxU88WEp40g2KU0q4nOT0VaUCFywYpD3R3frgtm1VOkOmhQACCCCAQO0KEJ4QntTu2cvMEUCgIQUOlRKed68Cr7ws957dtkOyOajoeVYp4dsUGXkppYQb8uxo7EX/8a3f6k9v/YtemrZGp/Q8vbExWD0CCCCAAAJlFiA8SYHyzpMyn1h0hwACCJRTwC4l/LhVSvhB+Ta817aU8NXXpkoJDxlaziHpC4GaE9h5YLt+NPdEzRh8i/4w8s81N38mjAACCCCAQDULEJ4c3h2q7VTzmcrcEECgsQQSCbsiTvPCuWp6YUVWKeFhCk+fqcjVlBJurJOC1RYicM68kxVtjWr9LZ8X0pw2CCCAAAIIIFCgAOFJgVBFNnMlk8lkkcd0SvNt34Q7ZRwGQQABBIoVsEsJL3tKzYvmHywlHLW7aO3dR9HRVyg0Y7Zi55wnud3Fdk17BBpGwKq4Y1XeeXPmhzruiH4Ns24WigACCCCAgGkBwhMzwkWFJ8Xe8pKvffZ36eVtWDnP/lvCEzMbTq8IIFCagF1KeNF8BZb9Vd4vtkhW7uzxquX0QQpPmqrwdZMoJVwaLUc1qMCX+7bo3AWn6tahP9NvLv7fDarAshFAAAEEECi/QCOHJ+3lDNnK6dyhGP2Cw5NiX7bi1D7X95kTJzwpZhtpiwAC5RawSwm/8nKqlPAbrx0uJXzkkYpePFKhWbcqduHFSvr95R6a/hBoGAHrvSeupEtrb97UMGtmoQgggAACCJgWaOTwxMk2Ha4QnjhJ8T0CCCCQR8Cz5TMFH16kpicWy/fJx1IiYT96Y5cS/vEEhSZNVXzASRgigECBApdPuKNNy+eX3NXmn8/8+YXaNeAdDVw9Qf5oV2V/73S80zQyj8/u2+lYvkcAAQQQQKBWBQhPcu+c0w0cTvtd0TtPsieXmf5w54nT1vE9Agh0VMAuJfz6awpapYRfXXm4lHAwqOi5Fyg8+1ZFRo1WMtilo0NxPAINJ2AFF7nCkMx/t3n3x7p40VD9bNg/6Ffn/0a5jsmEc/o+X9tijm24zWLBCCCAAAJ1JUB40nY7O3K3SWZPFQtPcp2dmUkQ4UldXb8sBoGqEbBLCS9+RE2LH25TSjh+fD9Fx1xDKeGq2SkmUusChYQn1hqH3N9PQW9Qb8760Gh4UuuezB8BBBBAAIFCBQhPUlLlCk3S7nZ4ku+lKum7QZzeYZK9kcW2Ty+OF8YWeknQDgEEChJIlxJecL+aXnhOnp077MOS/oBiPzpYSnjMtUr06FFQdzRCAIHCBAoJT6w2u/q/q1391+nk1ZPljTW3uVsl+7Eda+RCH7/hTpPC9olWCCCAAAL1J0B4kgpOSnmvSb6zgTtP6u9aYUUINLyAXUr4mSdTpYTfeVuu6MFSwn2sUsJXKnTjLEoJN/xZAoBpAafwJP39xm/e12UPDdc/DP+1nvnXzw+FI07HO82f8MRJiO8RQAABBOpVoJHDk3LfbZJ5jpQ1PMlMd5zuPHH6nsd26vVSZl0ImBHwffB+qpTw8qfblhIeNFihSTcocv0ktfY92szg9IoAAt8TcAo/Mr8/5e4+6hXsq+ATFxkLTwhTOEkRQAABBBpFgPDEeadLuSul4PDEGj778Z7sAbMDkULaZy6LF8Y6bzItEEAgJWCXEl75UqqU8JurM0oJd1f0kpEKzbyFUsKcLAhUWMCpWk76+x0nvq1v+r2vU1ZN1UuPzDk06448tmN1QrWdCp8ADI8AAgggUBGBRg5PTIIXFZ6YnEh239x50pnajIVAbQjYpYQfXKjmJx+Xd9PhUsItA06ySwmHJ06hlHBtbCWzRKCNwPqdazXm0Yv0Txf8i24/67+hgwACCCCAAAIdECA86QBenkMJT8y40isCCJRB4FAp4bn3KPC3VzJKCXdR9LwLFJ51C6WEy+BMFwhUg8DJd/fRsV2P08rpax2nk+uOlMyDCn2prONANEAAAQQQQKAGBQhPzGwa4YkZV3pFAIESBVKlhB9W82MPyfvBBrniceshHcWPP17RseMUmjJdLUOGltg7hyGAQLUK/GT5dD2zaak++skOdfV3q9ZpMi8EEEAAAQSqXoDwxMwWEZ6YcaVXBBAoVCBdSnj+/Wp6MauU8FnDFL5xtiJXjqWUcKGetEOgRgXWfPWGxi+5VL8f+W+aOfi2Gl0F00YAAQQQQKDyAoQnZvaA8MSMK70igEAeAfeePXYpYev9Jb53M0sJ91XksisVtkoJn32u5HbjiAACDSKQTCY18C9H6cQeJ+n5qW82yKpZJgIIIIAAAuUXIDwpv6nVI+GJGVd6RQCBLAG7lPAD81KlhL/8QkomJa9XsUGDFZ40TZHrJlJKmLMGgQYXmP30RL34+bPa/NOd6t50hNxul5KJpBJJKd6aUNz6e+sf+CCAAAIIIIBAuwKEJ2ZODsITM670ikDDC9ilhF96QcF59ynw5utyhQ7YJonuVinhSxWacROlhBv+LAEAgcMCzX6P3tq+Slc9OFpzxy3Q1EHTcvK0xJMKxeJqbSVE4fxBAAEEEEAglwDhiZnzgvDEjCu9ItCQAnYp4UULUqWEN38iJRL2ozd2KeHrJyl8/SRKCTfkmcGiEWhfwLq7pFuzVx63y240+C+navzAm3Ve7xu1+esD6t0toB8e1UUn9umqvt0Chzo6EIkr2pKAFgEEEEAAAQSyBAhPzJwShCdmXOkVgYYQOFRKeM7dqVLCe/fY604Guyh6/oUKzbpF0ZGX2v/MBwEEEMgWsIKTI4M+uVxSIpnUsvXbde/qtdr63Zc6o89Z3wMb2Kerbrv4RDtQsT6haKsisVZgEUAAAQQQQCBDgPDEzOlAeGLGlV4RqFsBu5TwY6lSwr4PNkitB0sJ9+un6NXjFJo6XS2Dz6jb9bMwBBAon8ARQa+8Hrd27Ivonlc369OvU4/3vfjZco3uPybnQAGvW1OH99OIk3vb3+8PxxWLcwdK+XaFnhBAAAEEal2A8MTMDhKemHGlVwTqR8AqJfz239U87z41vfyCPDt32GtL+gOKDTs7VUr4iqspJVw/O85KEOgUgS5NXgV8bh2IxfU/l76nfWEriE193tv1jvp0OUZ9g0e3O5fp5/bT6NP62t/vOdDCi2Q7ZdcYBAEEEECgFgQIT8zsEuGJGVd6RaCmBQ6VEl60IFVKOBaz19Pap68il1+l8PSZlBKu6R1m8ghUVsC628S668T6/Pmlj/XOltQjf+nPjgNfaWdoh4b0PrPdifo8bv3uuiHq1dVvv/vEegcKHwQQQAABBBCQCE/MnAWEJ2Zc6RWBmhOwSwkvnKum5c/IszWzlPAQhadMU2T8BEoJ19yuMmEEqlOga7NXfq9bb2z+Vve8uul7k0wqqZc+W6HR/a/KuwDrHSi/GnOaXG6Xdn8XtSug80EAAQQQQKDRBQhPzJwBhCdmXOkVgaoXOFxK+F4F3nyjTSnhyIhLFZ5xc6qUsM9X9WthggggUFsCPbr5ZdXW+e0zH2jzrtR7TrI/63a+rR90PV69gn3yLu7X1wxS/15B3n1SW6cAs0UAAQQQMChAeGIGl/DEjCu9IlCVAu2WEh54kiLXTVJ4wmTFTxxYlXNnUgggUB8CbpdL3bumQtnbFqxRayL37SJf7d+qbyPfaFCv/C+gvunC/rr4pN6KxBIKRXl0pz7OElaBAAIIINARAcKTjui1fyzhiRlXekWgKgTsUsKrVyk45x4FVmWUEu5ilRK+SKGZN1NKuCp2ikkg0DgCHqs8cReftu+L6H88/l67C29NturVLS9q1AlX5MWxXhprvTyW9540zjnEShFAAAEE8gsQnpg5QwhPzLjSKwIVE/Ds2K7mxVYp4Yfl2/hBqpSwy6X48f0UuWa8wpOnUUq4YrvDwAgg4PW4dETQp0079+t3yzbmBdkb3aNmb1B+j7/ddsN/2FO3jxiglnhC32VU7EEaAQQQQACBRhWol/Bk0MjZbbZww8p5Fd1SwpOK8jM4AmUQyCwl/NLz8uzaaXeaDAQUO+schWbcpOgVY5To3r0Mg9EFAggg0DGB9J0n0XhCdzzwdsc6+/9ljSecdZzGnnEMd550WJIOEEAAAQTqRaAewhMrOMkOS3L9u87cM8KTztRmLATKJGCXEn56qYIPLpTv3bWHSwn3PfpwKeFhwyW3u0wj0g0CCCBQHgGXS+rRNXUnya8eX68d+6Id6vjnl5+sIT840i5VbD26wwcBBBBAAIFGFyA8MXMGEJ6YcaVXBMou4NvwXqqU8LNWKeEvZdXkTHq9ahk0ROGp0xUZdz2lhMuuTocIIGBCoFvQJ5/Hpbte2aS/f/pth4b492lnKej3aO+BlnZfPtuhATgYAQQQQACBGhMgPDGzYYQnZlzpFYEOC9ilhJ9foeCCOQq89bpcoZDdZ6J7D6VKCd9EKeEOK9MBAghUQsDvdatrs1ef7Nyv3y/faGXBJX3OH3CUbrv4RMVbk9oXaimpDw5CAAEEEECg3gQIT8zsKOGJGVd6RaAkAbuU8MJ5av7rUnk3b5ISCfvRm5aTTlbk+skKXzeRUsIlyXIQAghUm0D3rn65XdLja7/U0+u/Knp6Pbv49c/jB6vZ77FfFGu9MJYPAggggAACCEiEJ2bOAsITM670ikBBAodKCd//FwVWvSr3vr32cUmrlPAFVinhWxQdMUrJYJeC+qMRAgggUCsC6ao7iUTSvvtk064DBU/d63bpv19xik49upti8YT2U2WnYDsaIoAAAgjUvwDhiZk9Jjwx40qvCLQrYJcSfvQhNS95RL6NG6TW1lQp4X4nKDJ2vMJTptnvMeGDAAII1LtAk9+tYMCreCKhpe9s07Pvf+X4CM+x3Zv101EDdcyRTfY7TqzHdUp97KfefVkfAggggEBjChCemNl3whMzrvSKwGEBu5TwWwrOvU+Bl19oW0p4mFVK+GZFL7+KUsKcMwgg0JAC1mM3zQGPvfZNO/frsbe/1Be7QwrHWg95WOWN+3QLaFj/Hho/9Aey/rk1IX0XalGC5KQhzxsWjQACCCDQvkA9hCfW6qzSxJmf7NLFnX0OEJ50tjjjNYSAXUr4qccVfGihfOveoZRwQ+w6i0QAgVIF/D63ugS81k14hz4HYnFt3xvVEU1eHdU1YL8fJf2JtSTs0sQlvme21GlyHAIIIIAAAjUhUC/hSbVhE55U244wn5oVsEsJz5+jpueWtS0lPHiowlOnKXLtdZQSrtndZeIIIGBawMpGmvwe+bxueTwuZWQl9tDWIzpWVZ1oS0Jx67YTPggggAACCCCQU4DwxMyJQXhixpVeG0DAFTqgwAvPqcv8++R/601ZpYWtT6JHD0VGjlb4xpsUu+AiJX2+BtBgiQgggEB5Bdwul1VszH6fiRWc8EEAAQQQQACBwgQITwpzKrYV4UmxYrRvaAGrlHCXhXPV9NTBUsLW/6u3Swmfosj1kxSaNFWt/fo3tBGLRwABBBBAAAEEEEAAgcoJEJ6YsSc8MeNKr3UiYJcSfu1vCs65O6uUcNeDpYRvppRwnew1y0AAAQQQQAABBBBAoB4ECE/M7CLhiRlXeq1hAbuU8COL1LzkUfk+/CCjlHB/Ra4Zr/DkGyglXMP7y9QRQAABBBBAAAEEEKhnAcITM7tLeGLGlV5rSSBdSnjOvWp6+QW5v95lzz4ZCCh29vBUKeHLrqSUcC3tKXNFAAEEEEAAAQQQQKBBBQhPzGw84YkZV3qtcgGrlHDzk0vUbJUSXv/u4VLCRx+jyBVjFL7hRsWGDbffZ8IHAQQQQAABBBBAAAEEEKgVAcITMztFeGLGlV6rUMD3/noFF8xV04pn5Nm21S7hkPR61TLEKiV8o/1ITmvfo6tw5kwJAQQQQAABBBBAAAEEEChMgPCkMKdiWxGeFCtG+5oRsEoJN61YruDCufL/PbOUcM+DpYRnU0q4ZnaTiSKAAAIIIIAAAggggEAhAoQnhSgV34bwpHgzjqhiAe/mTxRcNF9NTz8p7+ZN9t0ldinhk09NlRKeOIVSwlW8f0wNAQQQQAABBBBAAAEEOiZAeNIxv/aOJjwx40qvnSRwqJTwfXcpsHqV3Pv22iMnu3ZV9MKLFbrxJkVHXqpkc7CTZsQwCCCAAAIIIIAAAggggEDlBAhPzNgTnpTB9fIJd+j5JXfJ+t/0x/rnzE/md9a/z/y+kOOdpplvbKdja+17u5Twww+o+XGrlPDGw6WET+ivyLU/VnjiVEoJ19qmMl8EEEAAAQQQQAABBBAoiwDhSVkYv9cJ4UkZXNPBRa5AxOo+HY5khynp9k7HO00xu/9c4zn1UdXfp0sJ33+Pmla+mFVK+FyFZt2s6KVXUEq4qjeRySGAAAIIIIAAAggggEBnCBCemFEmPCmDayHhSK47UTLDk3zfO02x7sISSe7du9X8xGI1P7JIvnXvytUSsxlajzlYSnjqDMWGnUMpYaeTg+8RQAABBBBAAAEEEECgoQQIT8xsN+FJGVwLCU9yDUN40lbFKiXcZf79Cjy3XJ6tX9pf2qWEzzjTLiUcvvbHSvTuU4YdowsEEEAAAQQQQAABBBBAoD4FCE/M7CvhSRlcCwlPsu8syRzW6XinKdbqnSeHSgkvmCP/mrfkCofspSZ69lRk1OUKT5tJKWGnzed7BBBAAAEEEEAAAQQQQCBDgPDEzOlAeFIGV6fwo6PfO02xlt55YpcSfsAqJfyEvJ9ubltKeOIUha6fRClhpw3newQQQAABBBBAAAEEEECgHQHCEzOnBuFJGVyzK+lYXRZbbSd7GvnuVMk15WqttpMqJfyqgvf9RYHVf5N73z57+qlSwpcoNOMmRUeMopRwGc5DukAAAQQQQAABBBBAAAEECE/MnAOEJ2Vw7ehjMx09vgxLKGsXdinhhw6WEv4oo5Rw/x8eLiV8+uCyjklnCCCAAAIIIIAAAggggAACEuGJmbOA8KQMrh0NP/Idn+uulswpF3uHShmW+/0urFLCa95U8P671bTyJbm/+dpuk2xqUuzscxWaeROlhI3A0ykCCCCAAAIIIIAAAggg0FaA8MTMGUF4Ysa1U3t1HTigZCAgeb2dNq5dSnjpY6lSwuvXZZQSPlaRK69WeMp0Sgl32m4wEAIIIIAAAggggAACCCCQEiA8MXMmEJ6Yce20Xl1796jLnHu0/+e/MD6mXUp43n2pUsLbttrjJX0+tQw5U6FpMxQZO45SwsZ3gQEQQAABBBBAAAEEEEAAgfYFCE/MnB2EJ2ZcO6VX9/av1GvitfrmwSVq7XdC2ce0Swk/+4yCC+ceLCUctsdI9DxKkVGXKTx9lmLnX2gHKHwQQAABBBBAAAEEEEAAAQQqL0B4YmYPCE/MuBbUq0vWkzZu+Txuud2SyyUlElIimVS81foroWQyd1eeLZ+r17WXKzLmGu39w58KGq+QRt5NHx8sJfykvJ9llBI+5TSFJ0xWmFLChTDSBgEEEEAAAQQQQAABBBCoiADhiRl2whMzrnl7dbuk5oBXAb9H7aYj1iMxkqKxhMLRuP336Y/344/Ua9yVsu4M2f7uR0r26FnyKlyxmPyrXlFwzj0KvPY3ub9LlRJOdO2q2EUjFLpxNqWES9blQAQQQAABBBBAAAEEEECgcwUIT8x4E56YcW23V5/XrW7Nh1/sujsU06ZdB/Tp1we0dXdI/XoGdWLvrvZfRzSl2ll3onwXiqs1kZRv7Rr1mjRO1rtOvvvVr/Xdnb8segVWKeHgogVqWvqYfP/5odTaat/2ErdKCY+73r7DpIVSwkW7cgACCCCAAAIIIIAAAgggUGkBwhMzO0B4YsY1Z6+ZwcmBaFzzV3+mNZ/vbncGl57aR5PPPl5+r9u+8ySy4gV1n3KdXOGw/WLW7e98KDU1Oa8gXUr4vrvV9EpWKeFzzkuVEh51uRLduzv3RQsEEEAAAQQQQAABBBBAAIGqFSA8MbM1hCdmXL/Xq8ft0hFBn/1ek/e+3Kv7V23WvkjccfTe3QK6fcQADXhrpfyTJ0otLfYxe/74Z4Vm3dLu8XYp4ccfTZUSfs8qJZw6rvWYYxW+aqwiVinhs86W/bIVPggggAACCCCAAAIIIIAAAnUhQHhiZhvLGp4MGjm7zSw3rJxX0Kyt47LbbvsmVdmlXj7du/jkdru08at9+j8rPipqWSPfWKafzP9d6m2ykuIDTtLO1Wslj6dNP1ZI0mX+/QqsWCbPV9vs7+xSwmecqdANMxUZey2lhIuSpzECCCCAAAIIIIAAAgggUFsChCdm9qts4UmuACTXv8tcRmbYUs/hSZPfrWDAq2g8oV8uWa+94dRdIIV8rnh5sWY//Mc2Tfctekz7rxxrvzC2adnTCj4wT/6337If57E+dinhSy9TeBqlhAsxpg0CCCCAAAIIIIAAAgggUC8ChCdmdrKi4Ul6SfV+50mPbn5ZZYnnrPpUqz75uuCdnLL0Lo1/dkGb9skzf6T4+B/LtWC+vJ99mqrW43ar5dTTFZ44ReEfT1Brv/4Fj0FDBBBAAAEEEEAAAQQQQACB+hEgPDGzl4QnZlwP9er1pN51EmtN6PaFbxc2WjKp2+f/Vpe8vqzd9sluRyh64SUKzZit6CUjlWwOFtY3rRBAAAEEEEAAAQQQQAABBOpWgPDEzNYSnphxPdRrwO9Rl4BHH+/4Tr9f/qHjaO7WuH465zc6f80LudsGAor//E59e+evFHe1feeJY+c0QAABBBBAAAEEEEAAAQQQqGsBwhMz21tQeJL9ItjMqaTfVVLKO0/S/dTzYzvNfo+aAx699OEOPfDGlry76N/zre78j19oyOcbHHc7MWCg9v7y1/ZjOnYJHz4IIIAAAggggAACCCCAAAINL0B4YuYUKCg8KWRowpPcSsGAR01+j558d5uefHdrXso+772t4Rvf0LH7v1a/7Z/ruG2b5W+J5j2mZchQfffLf1LkyqsL2SbaIIAAAggggAACCCCAAAII1LEA4YmZze3U8KS96jv1fOeJFZxYAcraLbv17y99UtwuJpPqu2urjt+6Sf22fqJ+WzfpzD1fyP/Z5kNli9Mdxs4err1/+JNazjyruDFojQACCCCAAAIIIIAAAgggUDcChCdmtrJs4Yk1vezHe7LLD2eHJLkeB0ofs+2bVNndWv/4vG51a/bq6/0x/WLxug4tx3o65+4ZZ8vbEtOBv78jz4b35d24Qb4PrL/el3vXTvsOlH2//mfFTzmtQ2NxMAIIIIAAAggggAACCCCAQO0JEJ6Y2bOyhiflnGK9hCdW4NGjq9+m+dmDaxWKtZbMdFyPZv2v8YOVSCa1Z3/L9/px7f5W/vfWyff+e4oPGMijPCVLcyACCCCAAAIIIIAAAgggUJsChCdm9o3wxIxrm167Nnvl97r17Pvb9eiaL0oe8aejBmrYCT0UjrYq3IEQpuQJcCACCCCAAAIIIIAAAggggEBVCxCemNkewhMzrm16dbuk7gfvPvm3Fz/Wui/2FD3qZaf11bRz+ykpac/+mJLW3/BBAAEEEEAAAQQQQAABBBBAIEOA8MTM6UB4Ysb1e71a5YqtssXWHSN/ev4jbdp1oOCRhx7XXf919EC5XS6Foq2KcNdJwXY0RAABBBBAAAEEEEAAAQQaSYDwxMxuE56Ycc3Zq/XiWOsFsolEUsvf364n3t2q1kT7t5AEvG5NHd5PI07ubfcXiye0PxzvxBkzFAIIIIAAAggggAACCCCAQC0JEJ6Y2S3CEzOu7fbaLeiTz+Oyv9/ybUgvfrhDn319QF98m6ouZD3ic8JRXTSgd1ddNfho9eySetkswUknbxTDIYAAAggggAACCCCAAAI1KEB4YmbTCE/MuObtNdjkVZPP3aZNNJ7Qtj1hHd+zWV532+94QWwFNokhEUAAAQQQQAABBBBAAIEaFCA8MbNphCdmXB17dbtd9jtQvB6XPNbtJpkfl0utrQm1xBOKxBJ2aWI+CCCAAAIIIIAAAggggAACCDgJEJ44CZX2PeFJaW5lP8oKUzxWaJJI2JV0iEvKTkyHCCCAAAIIIIAAAggggEDdCxCemNliwhMzrvSKAAIIIIAAAggggAACCCCAQKcLEJ6YISc8MeNKrwgggAACCCCAAAIIIIAAAgh0ukAjhieDRs7WhpXzjFoTnhjlpXMEEEAAAQQQQAABBBBAAAEEOk+gkcITKzRJfwhPOu8cY6Qsgcsn3KHnl9yFSw4B0zaZ/Zseiw1GAAEEEEAAAQQQQACB+hFopPB/+ufYAAAGhklEQVQkvWvceXJQor1fHvml0uwFbsrXVL9mNdr2Xswaimmbaw0dPb4zXRgLAQQQQAABBBBAAAEEKitAeGLGvyYe2yE8MbP5Tr2a+qXdVL9O6ynn98WsoZi2hCfl3CX6QgABBBBAAAEEEECg8QQqFZ6sX79eQ4cOLRp83bp1OuOMMzRz5syij00fwJ0nByUKDU+sdpmfzEdOsvvI9c9Ox6b7b+9RlkqOn15P5hyy55lvftbas7+3/l22YXtGuY7P5ZRvDKf5ZV9JTt4dnWvm8aXalLrefI/tFOtU8p9AHIgAAggggAACCCCAAAI1J1CJ8MQKQKy/Sv1YoUtm8JL5LpPsPnO924TwpIjwJFfA4vQLaPqX+0KOzQ4Scv0inyusaG+MfHNLBxGZxxYyfq6wo5g1FjP/XHMs9P0oTt5p23x3bBT7XTHeHd3bUm3am6PT3Ev9A4rjEEAAAQQQQAABBBBAoP4EKhGeVFqR8CQjPGlvMwoNBzJ/oXW6C6WUX34LCQQy7w7Jd1eMifGd5mfi+/b2zGkswpPUXUC5zu18oVGl/8BifAQQQAABBBBAAAEEEKi8AOGJmT2om3eeFPILeb7wIhdvvmAmu321j+80v0K+z2eUDnzSbfLdheI0ViHhSb7xcj0qY7XPvpMnez35HsdyuiunlPPH6ZGefHctFeJs5o8MekUAAQQQQAABBBBAAIFqFmik8CTX4z2mShYTnhx810exv+yXOzwxPb5TYFHK9/n+wOjIYzWFhieZ4xfzaEuxd2901Mbp+FzrLXQ9xa6lmv+QZ24IIIAAAggggAACCCDQcYFGCk86rlV4Dw0VnlgsHf1Ftj3aUvrNFxIU+stzR/rIN0b6rohiHotqL8woJWhqb68K8XfaC6fvneZbrE2h45XyqA7hSeF/2NESAQQQQAABBBBAAIFGECA8MbPLdROepH/ZzmRqr9pLIVVgnN5Jkms7sh/D6MzxC/kF3Wl+md9bc8/uM9/xTn3nCiTS/669x2mc7sbJt9dO83H63mm+xdhkn5v5Hh9yes9JsfM288cGvSKAAAIIIIAAAggggEC1ChCemNmZmghPzCydXhFAAAEEEEAAAQQQQAABBBCoLwHCEzP7SXhixpVeEUAAAQQQQAABBBBAAAEEEOh0AcITM+SEJ2Zc6RUBBBBAAAEEEEAAAQQQQACBThcgPDFDXrXhiZnl0isCCCCAAAIIIIAAAggggAACCCBQnADhSXFetEYAAQQQQAABBBBAAAEEEEAAgQYTIDxpsA1nuQgggAACCCCAAAIIIIAAAgggUJwA4UlxXrRGAAEEEEAAAQQQQAABBBBAAIEGEyA8abANr8blDho5u820NqycV9A0reMKbVtQhzRCoIYFir2O8rXP/i7NwvVWwycIUy+bQLHXWtkGpiMEalCg2OuFn001uMlMGYEGEiA8aaDNrsal5gpAnEKRzB+s/DJXjbvKnDpboNjryKm90zXY2etjPASqRcDp2qmWeTIPBKpBoNjrxak9P5uqYVeZAwKNLUB40tj7X/HVO/2gzDdBfohWfPuYQJUIFHsdObXn2qqSjWUaVSfgdO1U3YSZEAIVFCj2enFqz8+mCm4mQyOAgC1AeMKJUFEBpx+UhCcV3R4GrxGBYq8jp/a5HtvhLq8aORmYplEBp2vH6OB0jkCNCRR7vTi152dTjZ0ATBeBOhQgPKnDTa2lJTn9oCQ8qaXdZK6VEij2Oiq2vbUu/otfpXaXcatJoJRrp5rmz1wQ6EyBYq+XYtvzs6kzd5OxEEDAEiA84TwwJpDrvxCkB0v/V+xSflCm++CXOWNbR8dVJGDiOirluuN6q6KTgqlUTKCUa6dik2VgBCosUOz1Umx7wpMKbzDDI9CAAoQnDbjp1bTkUn5QEp5U0w4yl2oQKPY6KrY9/we1GnaZOVSDQCnXTjXMmzkgUAmBYq+XYtvzs6kSu8qYCDS2AOFJY+9/xVdfyA/K9v6LN/8lvOLbxwSqRKDY68ipvdP3VbJspoFApwtwbXQ6OQPWsEAh10tmG6f2Tt/XMBVTRwCBGhEgPKmRjarnaWY/lpD9YsrsH5a5HmPgZZb1fIawtkIEOnod5bruMsflGitkF2jTCAJO11ojGLBGBAoVcLpenP4/Hj+bCpWmHQIIdIYA4UlnKDMGAggggAACCCCAAAIIIIAAAgjUrADhSc1uHRNHAAEEEEAAAQQQQAABBBBAAIHOEPh/ubZIAeLZJvAAAAAASUVORK5CYII=", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "analyzer.plot_metabolic_network(reaction_ids=['PPCK'])" ] }, { "cell_type": "code", "execution_count": 22, "id": "f2596ac1-f9d0-4114-b264-e96c48dcd22f", "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "hoverinfo": "none", "line": { "color": "red", "width": 1 }, "mode": "lines", "type": "scatter", "x": [ 0.010372550310842924, -0.08962744968915708, null, 0.010372550310842924, 0.11037255031084293, null, 0.010372550310842924, 0.11037255031084293, null ], "y": [ 0.015473098759617809, 0.11547309875961781, null, 0.015473098759617809, -0.0845269012403822, null, 0.015473098759617809, 0.11547309875961781, null ] }, { "hoverinfo": "none", "line": { "color": "green", "width": 1 }, "mode": "lines", "type": "scatter", "x": [ -0.054076521499141945, 0.010372550310842924, null, 0.08501879486026659, 0.010372550310842924, null ], "y": [ 0.07977833895195743, 0.015473098759617809, null, -0.03587550351909091, 0.015473098759617809, null ] }, { "hoverinfo": "text", "hovertext": [ "PFK
atp_c + f6p_c --> adp_c + fdp_c + h_c", "adp_c
ADP C10H12N5O10P2
C10H12N5O10P2", "atp_c
ATP C10H12N5O13P3
C10H12N5O13P3", "f6p_c
D-Fructose 6-phosphate
C6H11O9P", "fdp_c
D-Fructose 1,6-bisphosphate
C6H10O12P2", "h_c
H+
H" ], "marker": { "color": [ "#00008B", "#1f77b4", "#1f77b4", "#1f77b4", "#1f77b4", "#1f77b4" ], "colorbar": { "thickness": 15, "title": { "side": "right", "text": "Node Connections" }, "xanchor": "left" }, "line": { "width": 2 }, "size": [ 30, 20, 20, 20, 20, 20 ] }, "mode": "markers+text", "text": [ "PFK", "adp_c", "atp_c", "f6p_c", "fdp_c", "h_c" ], "textposition": "top center", "type": "scatter", "x": [ 0.010372550310842924, -0.08962744968915708, -0.054076521499141945, 0.08501879486026659, 0.11037255031084293, 0.11037255031084293 ], "y": [ 0.015473098759617809, 0.11547309875961781, 0.07977833895195743, -0.03587550351909091, -0.0845269012403822, 0.11547309875961781 ] } ], "layout": { "annotations": [ { "showarrow": false, "text": "Hover over nodes to see details", "x": 0.005, "xref": "paper", "y": -0.002, "yref": "paper" }, { "arrowcolor": "red", "arrowhead": 3, "arrowsize": 2, "arrowwidth": 1.5, "ax": 0.010372550310842924, "axref": "x", "ay": 0.015473098759617809, "ayref": "y", "showarrow": true, "x": -0.08962744968915708, "xref": "x", "y": 0.11547309875961781, "yref": "y" }, { "arrowcolor": "red", "arrowhead": 3, "arrowsize": 2, "arrowwidth": 1.5, "ax": 0.010372550310842924, "axref": "x", "ay": 0.015473098759617809, "ayref": "y", "showarrow": true, "x": 0.11037255031084293, "xref": "x", "y": -0.0845269012403822, "yref": "y" }, { "arrowcolor": "red", "arrowhead": 3, "arrowsize": 2, "arrowwidth": 1.5, "ax": 0.010372550310842924, "axref": "x", "ay": 0.015473098759617809, "ayref": "y", "showarrow": true, "x": 0.11037255031084293, "xref": "x", "y": 0.11547309875961781, "yref": "y" }, { "arrowcolor": "green", "arrowhead": 3, "arrowsize": 2, "arrowwidth": 1.5, "ax": -0.054076521499141945, "axref": "x", "ay": 0.07977833895195743, "ayref": "y", "showarrow": true, "x": 0.010372550310842924, "xref": "x", "y": 0.015473098759617809, "yref": "y" }, { "arrowcolor": "green", "arrowhead": 3, "arrowsize": 2, "arrowwidth": 1.5, "ax": 0.08501879486026659, "axref": "x", "ay": -0.03587550351909091, "ayref": "y", "showarrow": true, "x": 0.010372550310842924, "xref": "x", "y": 0.015473098759617809, "yref": "y" } ], "autosize": true, "hovermode": "closest", "margin": { "b": 0, "l": 0, "r": 0, "t": 40 }, "showlegend": false, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "font": { "size": 16 }, "text": "
Metabolic Network - Reaction and Metabolites" }, "xaxis": { "autorange": true, "range": [ -0.1039832492452837, 0.12472834986696955 ], "showgrid": false, "type": "linear", "zeroline": false }, "yaxis": { "autorange": true, "range": [ -0.10677139021833812, 0.13771758773757373 ], "showgrid": false, "type": "linear", "zeroline": false } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAABE8AAAFoCAYAAACmM9U+AAAAAXNSR0IArs4c6QAAIABJREFUeF7s3Qd0G9edNfCLXthFSZbVm9Wr1XvvXbYkW1a1HSfrzSa7n+Nkk3Wy2d3YSZy6m57YsqqtYklWl6jeey9W750qFAs6MN+ZASGBFAgMQAyJcnGONxti5s17v/fAGH/OvKsSBEEAXxSgAAUoQAEKUIACFKAABShAAQpQgAIBBVQsnnBlUIACFKAABShAAQpQgAIUoAAFKECBsgVYPOHqoAAFKEABClCAAhSgAAUoQAEKUIACQQRYPOHyoAAFKEABClCAAhSgAAUoQAEKUIACLJ5wDVCAAhSgAAUoQAEKUIACFKAABShAgcgEeOdJZG48iwIUoAAFKEABClCAAhSgAAUoQIEkEWDxJEkmmsOkAAUoQAEKUIACFKAABShAAQpQIDIBFk8ic+NZFKAABShAAQpQgAIUoAAFKEABCiSJAIsnSTLRHCYFKEABClCAAhSgAAUoQAEKUIACkQmweBKZG8+iAAUoQAEKUIACFKAABShAAQpQIEkEWDxJkonmMClAAQpQgAIUoAAFKEABClCAAhSITIDFk8jceBYFKEABClCAAhSgAAUoQAEKUIACSSLA4kmSTDSHSQEKUIACFKAABShAAQpQgAIUoEBkAiyeRObGsyhAAQpQgAIUoAAFKEABClCAAhRIEgEWT5JkojlMClCAAhSgAAUoQAEKUIACFKAABSITYPEkMjeeRQEKUIACFKAABShAAQpQgAIUoECSCLB4kiQTzWFSgAIUoAAFKEABClCAAhSgAAUoEJkAiyeRufEsClCAAhSgAAUoQAEKUIACFKAABZJEgMWTJJloDpMCFKAABShAAQpQgAIUoAAFKECByARYPInMjWdRgAIUoAAFKEABClCAAhSgAAUokCQCLJ4kyURzmBSgAAUoQAEKUIACFKAABShAAQpEJsDiSWRuPIsCFKAABShAAQpQgAIUoAAFKECBJBFg8SRJJprDpAAFKEABClCAAhSgAAUoQAEKUCAyARZPInPjWRSgAAUoQAEKUIACFKAABShAAQokiQCLJ0ky0RwmBShAAQpQgAIUoAAFKEABClCAApEJsHgSmRvPogAFKEABClCAAhSgAAUoQAEKUCBJBFg8SZKJ5jApQAEKUIACFKAABShAAQpQgAIUiEyAxZPI3HgWBShAAQpQgAIUoAAFKEABClCAAkkiwOJJJU90y74zcHrb7Kj2Qok2o9rBOGiMhnEwSRXYxURYD0qMQYk2K3BaeSkKUIACFKAABShAAQrIFkj44on4L/fiK1iBQs4xZYmW98tDec8P1K9AbUbrOnLakXOM3H7LXslRPjDSMUTaDd8aLH1+tAtr5elfWX2paKtIx1Ce8+SMUc7vETnHJOLvGjl+5ZkfnksBClCAAhSgAAUoQAGlBVg8AZCsX2giWVxyrCL9ohTpeZGMI9Q5Fd2Xsq5X0f2I5It7rPQx1JyW5305Y5T72QhVzI1kDuSMTc4Y5LTjf4zcQq0S1w63rzyeAhSgAAUoQAEKUIAC5RFIiuKJ+BfzUF9OI/2X+0jP801aec8PNPlKtFm6v8GuEen1Iz2vPB8Apb6ohtsnJTzD7UOw42NpbqI5LrltyRm/7xj+rnleVY6f3LngcRSgAAUoQAEKUIACFKgMARZPivccKesvqP6TUvqxBd9fmstzjP8XrmDt+BcvQh0n96/BYjulxxDqMRH/tkN9SfTvZ6jrBLOUO55I59BXXPP1V06xLdof1kiKJ6FMy1oz4s8DzXNZ7YVa58HWQajPRmn7svoWqrBT+n3/8UXjMybny395iieh5jLUHAT6LJe2jIZDaWc5n81I+i5nfUayVqL9uWV7FKAABShAAQpQgALJI5A0xRPfl4tAX6pCvef/JTRQASXcvSBKFyACfQmQ86UkUL+V+FnpIohvvHKLJ+UZS3nGI+e6vi92cuZVzhfoSH91hFs8kTO2suwiWe9K9C8c+7Jc5azBcK4TrABXnsJi6c98Wb+Hkul3TThjlTPPkX72eB4FKEABClCAAhSgAAXkCLB4Upx0E+zLTVnFg2BfToPhR3KtcL68yvliHWkhoPR5oa5V3n4H+oIV6C/8cvoVrK3S8xVOe3I+aKGOCefLYTimcooOctZCONeUe6zc40LZBXpf6c9YuNcsqz/hGMiZp2DrWO615B5XnsJmsMJJOJ/TSNYGz6EABShAAQpQgAIUoEAkAklVPPH/l/1gX47L++WhdLEl0MSEunuj9BeT8vYpWsWAUMWSaPc7Foon4X5pFY8v/ZJz10KwdVJ6TYVzt1Og/ojtyVmD4X7JLesLdbhfiMMxL8/4IimylPWLtqzPWLL/rgm2JuT+XgtnPUTyP4Q8hwIUoAAFKEABClCAAqEEWDwpFir9JSoYXKhb7kN94YzkC5vcLxllfVFRsngSrGBS1hdbn1Eklr6xBHOU61XWcYGuEerDVJ735RSl/NdVeden3DUYai0HWm/ltQ9VgJFTSJI7vkiOi3bxpLxzKbc4ocS8yF23wT5n4Yy/9LGhipLl+UzyXApQgAIUoAAFKEABCvgLJF3xRE5xIZy/cob68h1ouUXyhU3uFx854wvny2np/svph9zxlbdt/3GEUxyS0z9f0SfY5rHR/FUSzjqSuz7lzJXctSC3rVDtybEP1Ua4BR25fZd7nNziiZzPoty5lFsgCfaZkjs+ucfJGV+ouQpn/KF+l0bz88i2KEABClCAAhSgAAUoUFqAxZNiEblf6uR+4Zf7BSTax8n9QhPplxY5/Y22pZwiiRLFE7l3xUTj14oc11BfROWuzdJrRM5aiFb/5K6NaPZJbt/lHsfiyeynBIHM5P5MbpEs2OdLzjqJxueTbVCAAhSgAAUoQAEKUCApiyeBpl3ul2+5xwUrYojv+e834f/fg31BlvulJNrH+XuF+rIivl96PGWdE45lsC9actsP1EZ5zo3mrw85rnKKOXJM5c5ReQodctZgeYsV4XzG5O4RU1a/A31GwylWBfsMyV2D4XqVnudA8x7MMNIEKjlzL+d3ipz1F+pzE83PKNuiAAUoQAEKUIACFEhugZgtntx+aI3KzAx65Z+wcelfQrYV6DjxZ6VfgdryP670+6XbEN/3v5bv/w90XKBOyzmurLGE6rt4vVBWcjyVtCxrDGX1O5RXWeMJ9+chF1iIAyJxjWR9+uZYzhwFW8v+7wWz8h92oPaCzVuotehrW+5nrKzPU7if2bKmUs4ciufKsS/rs5gov2tCmQcav9z1Xt7PIs+nAAUoQAEKUIAC8S5QM9sU70OIyf4nfPEkJtXL+AIVq31lvyhAAQpQgAIUoAAFKEABCsSSgNw/XMVSnyuqLyyeKCPN4okyriFb5Yc9JBEPoAAFKEABClCAAhSgAAUoEFCA36fKXhgsnijzoWHxRBnXkK3ywx6SiAdQgAIUoAAFKEABClCAAhRg8STMNcDiSZhgMg9n8UQmVKjD5OytUboN33P/gfY9kbvfg6/NYHshhOo736cABShAAQpQgAIUoAAFKBBPAvwOVfZssXiizEpm8UQZ14CbwvpfqvSmseJ7cjbhDNTd0nex8K4WhSaVzVKAAhSgAAUoQAEKUIACMSHg++Mxv0M9Px2JWDyJhZRFFk8U+ugHStQJVjwJJ4mkdJdZLFFoEtksBShAAQpQgAIUoAAFKBCTAuEkjMr5A3RMDjLCTiVa8UQsnIiv09tmRygSndNYPImOo3SnSelX6cdyWDyJEjaboQAFKEABClCAAhSgAAWSWoDFk7KnP5GKJ747TnjnSZCP++2H1rj5ZRDqg1ve90NB8M6TUEJ8nwIUoAAFKEABClCAAhRIJIFQ37FCjTWRv0MlSvHEv2DC4kmSFk9KP58X7Q9+Iv8iCPVLkO9TgAIUoAAFKEABClCAAokvwO9QsXXnyfHjxyH+E+mrbdu2EP/xvUoXS1g8SZDiiTiMYI/tlH5ffJwn0Iax/hxM24n0Y8fzKEABClCAAhSgAAUoQIFEFyhv8STQd7REMauMO0/mzp0rFU/8CyByPU+cOIE2bdpg2rRpJYonZZ1fWXufcM8TuTOq4HG8U0RBXDZNAQpQgAIUoAAFKEABClAgiQQqq3giEvsXQOSSz5s3D4IgBD2Xd54E0YynPU/kLoqyjgtWPAl0R4t/O+HeoVLevvJ8ClCAAhSgAAUoQAEKUIACsSyQ7N+hWDxRZnXyzhNlXNkqBShAAQpQgAIUoAAFKEABClCgwgVYPFGGnMUTZVzZKgUoQAEKUIACFKAABShAAQpQoMIFErF4UuGIAS7I4kkszAL7QAEKUIACFKAABShAAQpQgAIUiIIAiydRQGTxRBnEaLSqVqugUang9nggCIAQjUbZBgUoQAEKUIACFKAABShAgSQUUKsA8TuWRwA84v9JoheLJ8pMNu88UcY1ZKviB9mk10CrUUEjfrL9X2IRxe2B0+WB1eGWiil8UYACFKAABShAAQpQgAIUoEBgAZUKMOo10GnU0nes0i+3R4DTLcDmcCd8MYXFE2U+JSyeKOMatFWzUQujTl3iGLvLg9t5VtTOMkkfeP+X1e6Wiih8UYACFKAABShAAQpQgAIUoEBJAfGP0iaDpsQPnW4Pbj62omamCQZtye9XYgHFYk/c71csnijzCWHxRBnXMltNM+ugK66EXn9kweaz93D5fhFu5Vmlc8SbUOpUMaNRtVQMaVkD1dIM0s/tTg+KbK4K7i0vRwEKUIACFKAABShAAQpQIHYFUk1a6IuLI7kFdqw/fReXcwtx45FFemRHfIl/oG5YLQUDm9eQ/n/xJd7lX2BNzO9XLJ4os15ZPFHGNWCraWatdFeJRxCw5sQdrDx+G+LtY2W9xArppE510bdpNRZQKnCeeCkKUIACFKAABShAAQpQIPYF/AsnW87ex+JDN+BwecrsuLhdwth2tTC89YsQH/MRH+MpsDhjf6Bh9pDFkzDBZB7O4olMqPIeZjZoYdSrIT6e8+sNZ3Ept0h2k23rZOI7/V+SPuDi3SfiXSh8UYACFKAABShAAQpQgAIUSFYBcRsEcTsEcTPY/9tyASduPpFN0ah6Kr43uKn0OI/N4YHFnlh3oLB4InsphHUgiydhcUV2sFjhzEjRSSfP3XsV287lht3Q2Pa1MLptTem8vELH01vQwm6IJ1CAAhSgAAUoQAEKUIACFIhjAbVKhYxUHcRtYVccu40Vx26FPZp+zapjatd60nlPipxBnwgIu/FKPoHFE2UmgMUTZVxLtJpm0kKnVePMnXz8esO5iK4opvP8ZGQL1K1i5v4nEQnyJApQgAIUoAAFKEABClAgEQRSjFoYdGqIe0j+9+ozEafnvD+kKZq/mA6nS0CBNXEe32HxRJlVzuKJMq5PWxUftckSN30VBHy8/izO3i2I+IrdG2Xj7V4NpT1T8gqf/3CrHj+C/sQxaL8+A2frNnB06ymGm0d8PZ5IAQpQgAIUoAAFKEABClCgwgTcbuj37Ybu5Am4mreAo007CFlVnrt8Vqpe2tLg7zsuYd/lRxF3r0XNdOnxHbGxxwUOCELZ+1FGfJFKOJHFE2XQWTxRxvVpq+LOz+JGRuLGsO8uOAIxMivSV6ZJh99OagfY7bAcOgr1qVPQfn0aujPiP6egzr0P2+BhyP/Pn8HVtHmkl+F5FKAABShAAQpQgAIUoAAFKk1Ae+5rpP/XBzDmrIOnWnU4W7SCs0VLuJq3hKd1a5g7tAMMBvzbomN4Uo47RsQwjz+/8TLEbRYKbS44EmRvSRZPlFm6LJ4o4/q0VbNBA6Neg3P3CvDLdWfDu5og4IXcW6hz6xLq3rqIurcu4eUnN6G9cgnwlCzCODp2xpNf/BbOdi+Hdw0eTQEKUIACFKAABShAAQpQIAYFdIcOIOOD70N/6EDJ3qnVcDVohCMZtXG9VmNcr9UIN2o1wr1qtaS7SMJ5/Wh4czSungqr3Q2rwx3OqTF7LIsnykwNiyfKuD5XPFl9/A6WHb0Z9GrVTx5Gp7P7UasgF3XuXZcKJjqnI+g5ztZtkf+T/4G930CFR8LmKUABClCAAhSgAAUoQAEKVLyAYeN6ZPzPT6A9cyr4dyOdHtdqv4Sb1evgVlo1HGzeFfdbBf/j8isdamNE6xelwolYQEmEF4snyswiiyfKuD5t1aTXwGTQYOvZ+5i371rQq+nzHuG9P38fra+dDtkrd+OXkP/vP4F1zPiwq6shG+cBFKAABShAAQpQgAIUoAAFYklAEGBa/iUyfvHfUF++FLJnJ+u1xK+//Ss407OCHju9W330aVoNFrsbNt55EtK1rAPmzp0rvTVt2rSw25g3b56030wk54Z9sXKcwOJJOfDknCruAi3uBn0ptwgfrjkT8hS124V3P/tvdD+4MfCxej1cP/ghHv/r9+EUwrslLeTFeQAFKEABClCAAhSgAAUoQIEYFtDBg6zf/gLaX38MOALfpb+782D8ZcaP4dFoQ47kxyNboEHVFBTZXFKqaSK8eOeJMrPI4okyrk9b1WpUSDfr4PII+Oa8Q2LoTuiXIOBbc36G3nvXlnmskJYGe4/esEyZAXuffhBM5tDt8ggKUIACFKAABShAAQpQgAJxJqCyWmDYvhWm+bNh3L0TqoL8MkewpecYfDLlB7Luzhe3R/nb1I7QqlV4UuSUQj4S4cXiiTKzyOKJMq4lWs1M1UOtAubuvYpt53JlX3HS8r9gzHrv7U++l9CuPVxjx0E1Zza0V69IEchiHLGzaXNYX30N1nGvwF23vuxr8EAKUIACFKAABShAAQpQgAKxJqC5fhWm5Uth+nIhdOe+9gZmqFRw1W8AYfoMaFcsh+ro0RLd/mr4DCwe803ZQ+nfrDqmdK0HsWaSVxh8r0nZjcbAgSyeKDMJLJ4o41qiVTFtR0zdsbk8+PHyk3hYJP+DOXjrl5ix8Dcl2stfsASFQ0ZAZSmCcd0amOd9Bv3hA1BZrdJxnirZsPUfCOvk6XB06wFBp6uAUfISFKAABShAAQpQgAIUoAAFIhNQOZ3Q79kF0xdzYdyyCepHD6WGBJMJjg6dYZk6E7ZhIyCYU5C6fhXSp0wqcaHZr72HnH6vyr54dooeH41vDTGu2GJzwZYgj+yIACyeyF4GYR3I4klYXJEf7Lv75Os7+fjVhnNhNdRv3zp8Y/b/eO8yAeBq9BLu7zkCaDQl2tGdOoGU2Z/AkLMOmtu3vL9sdDo427SD5fVpsI0YJeWk80UBClCAAhSgAAUoQAEKUKCyBdS592FasxKmL+ZBd/woVC6X1CV3zVqwDR4Gy4y34WzVpmQ33W5U7/4ytJcueH+uVuPv0/8D27oOD2s4PxjWDE1fSEu4u05YPAlrGYR1MIsnYXFFfrBGo0KG2XsHyMmbTzBr9xU8sTpDNlg1VY9v9mmMl3bnQD9lMuD0npP32z/CMu3NMs9XP34M07LFMC3+HLoTxyBWcqVfRC/WhHXIcNgmvQFHh07SLxu+KEABClCAAhSgAAUoQAEKKC7g8UB/+CCMixbAtH4tNHdvS5f0/cHXOukNWMdPhCczs8yumOd8isz3/sX7vk4Hx+Ivcb5jH/xj52XkFthDDiHdpMU7vRuhxYvp0rGJtNeJb/C88yTkMojoABZPImKL7CSdVoU0k7eAYnG4MXvPVRy6+qjMxgY2fwETOtaWbiUTX7YNm5Exaaz0eI54B8ndo2cBozF0Z8RfUof2w/zp32DctgXqhw+8v6QMRjg6dYFl2kzY+w8O+ksq9EV4BAUoQAEKUIACFKAABShAgZIC6rw8GLbkwDz3M+gP7ofKbpMO8GRXha1vf1je/pb0WI6cP+qqiorwQseWEO9YER/nyVu0HKYhA6X2HC4PFh68HnSPya4Ns6U9Tsx67x38hVaXdF6ivVg8UWZGWTxRxrXMVnVaNdJMzyKzHlscuPKgSIoyvvXYirrZJjSulopG1VORovce5xEEFFhc0u7PuiOHUHX8CKgKC5D/o/9E4f/7Qdgj0Ny7C9Pnc6WcdGnzJbfbu/lSvQawjR4H66uT4GzRKux2eQIFKEABClCAAhSgAAUoQAHd6ZMwLV0M48rl0F4rDrnQaLwhF+NehXXyNLhfqBE2VNqvPkLaL38GISMTD5ashPPljtBqvN+vxOQc8VVkd+FibiEu3S/E9UcW1M4yo1Hx96t0o/f7lbgbQoHVBZc78Qon4vhYPAl7ack6gcUTWUzRPUhM3jEZtDCIFc8g2cXiDidi1rjV5oJ/aJb2zClUfWWktGHs3WPnIGRVibiD0sZMu7ZLd6UYdu+Eujj2y5OaCkePPrBMZRRyxLg8kQIUoAAFKEABClCAAkkgIEUJb9sC8/w50O/eAXVhgTRqT3o67N17wfLmN+Ho1adcQRaqx49Qo11TacPYBys3wPVS06eyYuHELH6/0oXYkkClgt3hhsXuCvY1LO5njMUTZaaQxRNlXGW1KhZHtVq19FiOuPWI+KEXE7jEO01cbvEfT5kfas31a6g6ahBsI0bjyUe/lnU9OQdpL1+Eed5sGFevgPbq5ZJRyK9MhHX8BEYhy4HkMRSgAAUoQAEKUIACFEhgASlKeNkS6Q6TElHCDRrCNmKM9EdYV8PGURPI+P6/wrhpAx58tR7uuvUCtit+nxK/W2nUKqiL/xEEQbqD3+0W4Azy/SpqHY2Bhlg8UWYSWDxRxrVCWlXfvSM9wvNw4fIyf4GUpyNSFPL64ijkQ6WikPuJUcjT4Ojes1wV5PL0j+dSgAIUoAAFKEABClCAAhUj8DRKeMEcGLdtLhkl3NG7j6JtyHDpzpBov8Q/HGdPfgUPlq9leqgMXBZPZCBFcAiLJxGgxdIpYv65ef5sFH7nPcW7FTAKWauFs017WF+fAuvIMfxlpvgs8AIUoAAFKEABClCAAhSoGAFxr0Tj2lXeKGExwVOMElappARPsVAiRQm3bK14Z9J+8wsUvv0taa8TvkILsHgS2iiSI1g8iUQtxs5RFeRDMJqkqK6Keom7ZpuWL4Fp4XzoThyHyumQLi39Ih08DNbXpjAKuaImg9ehAAUoQAEKUIACFKBANASkKOEDMC1aAKMUJXxHalXQ6+Fs3Vb6d3zruAkVm9LpcEDlcEBITY3GCJOiDRZPlJnmqBZPWvadUaKXp7fNltVr8bzSx95+aJV1Lg+KAYHiX7JSFPLWzaWikDvDMu1NRiHHwDSxCxSgAAUoQAEKUIACFCgtIEUJb86Bed4s6A8eeBYlXLWaN0r4rW/KjhKmbmwIsHiizDxErXgSqAAS6Gf+w/AvtrB4oswEV0arUhTyF/NhWla8edTTKOT63ijkVyZVyO19lTF2XpMCFKAABShAAQpQgAKxLiBFCX+5CMZVYpTwVW9IhBgl3EyMEp4oPZIfSZRwrI87WfrH4okyM12pxRPfkHjniTKTGwutShtL7d4B8yd/hWHPTqjz86Vuibfd2Xv0hmXKDNj79odgMsdCd9kHClCAAhSgAAUoQAEKJJyAGARh2L4V5nmfwbB7J1RFhdIYn0YJv/0tOHr0ZhBEgsw8iyfKTCSLJ8q4stUyBKQo5PlzvFHIVy49i0Ju0gy2VybC8spERiFz9VCAAhSgAAUoQAEKUKCcAmKUsHnpYhjFKOHzZwGPB1Cr4arfELZRY1E0/U3+e3c5jWP1dBZPlJkZFk+UcWWrMgSkKOQN6549X2m1eCvgVarA1ncgrG9MZxSyDEceQgEKUIACFKAABShAAe8d3zth+nwujFs3Qf34kYQimExwdBKjhN+Ugh2UiBKmfmwJsHiizHyweKKMK1uNQECMQjbPmQVjzlpobt+S7koRxCjk1u2k5y5tI0bz2csgroNe+SdsXPqXCOR5CgUoQAEKUIACFKBAPApIUcKrV8C0cAF0J/2ihGvWgm2wGCX8FvcajMeJLWefWTwpJ2AZp7N4oowrWy2ngBSF/NWXxVHIx6R4MvHlrvEibEN8UcidpVsP+fIKsHjClUABClCAAhSgAAUSXMAXJfzFfBhz1pWMEm7TDtZJb1R8lHCCk8fj8Fg8UWbWKrR4Ulb6DjeMVWZyE6bVp1HIf4dx22aoH+RKQxMMBjg6em9BtA8YXLF585WEKxZI/F++O01K/1w8RnzPV1Dxfz/cu1PKc24lMfGyFKAABShAAQpQIGEEnkYJz/0U+kNilLBdGptHjBLuNwCWN99hlHDCzHZ0BsLiSXQcS7cSteKJ2LB/9LD430vHD5cukpQ+3v+c2w+tyoyYrca9gBSFvFCMQl4C3dkzgH8U8sixsE54LWluT/S/2yTQnSe+wod/wSScO1RKHxvOuXG/0DgAClCAAhSgAAUoUEkCUpTwkoUwrvoK2uv+UcItYH1lonSHCaOEK2ly4uCyLJ4oM0lRLZ5Es4ssnkRTM3Hb8m2MZf70r1Lsmjr/iTRYIUWMQu4Fy9SZsPfpl7AbY8kpnpS+0yScAkg4xybuKuPIKEABClCAAhSggLICUpTwti0wz59dKko4w/vvtG//E4MUlJ2ChGqdxRNlppPFE2Vc2WolCYiRbClzZ3mr9Jf9o5CbwjZ+IiyvTorrSLayHs8Rucu684TFk0pajLwsBShAAQpQgAIUCCKgvXwRpq+WwrhMjBI+9yxKuEFxlPA0RglzAUUmwOJJZG6hzmLxJJQQ349bASkKOWc9zHNnQX9wP1S+KOQsMQp5AKxTZsRVBT9UcSTU+76JDOduknCOjduFwo5TgAIUoAAFKECBChB4GiW8YDaM27Y8ixI2m2Hv1BXWqTOlYATBZK6A3vASiSzA4okys8viiTKubDUGBcRnR6Uo5A1rSkUht4X1tSmwjRwT08+OhiqOhHo/GsUTFlNicGGzSxSgAAUoQAEKxKyAFCW86itvguSpE1C5XIBKBbcYJTx0hBR84GzZOmb7z47FpwCLJ8rMG4snyriy1RgXkKKQVyz1/g/Z8aMlo5AHD4P19SkxuWt5sMd2RPLSyTha9emGAAAgAElEQVShjpczTUzbkaPEYyhAAQpQgAIUoIAYgeOB/vABmD6f540SvndXYhH0ejjbtpf+HdM6+pWkSInkeqg8ARZPlLFn8UQZV7YaTwK+KOTP/gHjlk0lo5A7dIJl2luwDxwSl/8jxztF4mkhsq8UoAAFKEABCsSjgBQlvGmD91Hxw35RwtWqe6OEZ4pRwp0AtToeh8c+x6EAiyfKTBqLJ8q4stU4FpCikBd/DtOXi0pGIdetB5sYhTzx9bi5vTJY8STQXSn+01Z6o9k4nlJ2nQIUoAAFKEABCkRVQHwEx7zkCxhWr4D2+jVAEACNBs7mLaUoYctrU+CpVj2q12RjFJArwOKJXKnwjmPxJDwvHp1kAtLGXnt2QYpC3rWjZBRy957Sc6qJHIWcZNPN4VKAAhSgAAUoQIGAAk+jhOfNgmHPbqiKCqXjPBlilHBvWN76VlwFEXCaE1uAxRNl5pfFE2Vc2WqCCkhRyPM+g3HlcmivXH4aKed8SYxCngDLhNfiOgo5QaeNw6IABShAAQpQgAJhC0hRwsuWwLh8CXQXzvtFCTeCbfRYFE2dyX/vC1uVJ1SEAIsnyiizeKKMK1tNAgHpLxCbcpAy5xPoD/hHIWd5o5DfmAFHj14QdLok0OAQKUABClCAAhSgQHwLPI0Sni9GCW+GOu+xNCChOErYMsO7Dx6jhON7npOh9yyeKDPLLJ4o48pWk1DgaRRyzlpobt2Unn0VtFo4W4lRyJNhGzWuwqOQdVo1tBo1NGoxFU8FQRDg8QhwuQU43R7p8Vy+KEABClCAAhSgQLIKeKOEl8O0cAH0p04AvijhWrVhGzIclulvwdmiVbLycNxxKsDiiTITx+KJMq5sNckFxF3Xxf8hNn8+t2QU8gs1YBs0FNY3pikWhawCYDRoYNJrQs6Cw+mBxeGWCip8UYACFKAABShAgYQXEFMWD+33RglvXF8ySrjdy9JGr7bR4+MyZTHh544DlC2QKMWTln1nlBjz6W2zZRsocSCLJ0qosk0K+AtIUcgHYf7sHzBs3QRN7n3pXcFgkGLrLFPfhH3Q0Kj8j7RGrUKaWQu1SiyhAEV2Fy7lFuFybiGuPrTgxUwjGmSnoGG1VFRN1T/tZYHVBafLw3mjAAUoQAEKUIACCSegfvwYxk3rYZr7GfRHDkJlt0tjdFerDnv/QbDMeJtRwgk368k9oEQonoiFk9LFkkA/q8iZZvGkIrV5LQoA0l84TIu/gGnpIui+Pg243eIzNXCJUcgjxnijkFu1CdtKLJykm7XS4zkuj4BlR25iw+m7ZT6a06Z2Bmb0aIBMk3dPliKbG3anO+zr8gQKUIACFKAABSgQawJSlPCiz2FYswLaG9e9UcLi49RSlPAkWCZNZpRwrE0a+xM1gUQongTCYPGkjCVy+6E1aouHDVEgVgVKRCHv3gH1kydSV4WUFNjFKGTxrpS+/SGYU4IOQSyYpKdooVGpcPOxFX/ddgm3n4T+DJn1Gszs0QAd6mVJ+6GId6CI+6HwRQEKUIACFKAABeJJ4GmU8NxZMOzdBVVRkdR9KUq4Zx9vlHC3HtzIP54mlX2NWIDFk4jpgn/nEsRvTDH4YvEkBieFXVJcQIxCNs+bDdOq5dBevuQXhdwEtnETYB0/Aa6GjZ/rR6pJC71WjQeFDvz4q5Owh/kIzrt9G6Fj/SoQtz7JK3QoPk5egAIUoAAFKEABCpRXQHvpAkzLv4Rx2RLoLvpFCTdsBOvo8bBMmc4o4fIi8/y4FEik4on/vifc86SM5cjiSVx+TtnpKAqorBYYNm6AWfwLyoG9UFks3r+gZGbB1qc/rFNnSlHIWpMBaSatdDfqR+u+xqX7hWH3IsWgxYdjWyHdpIPN4YbFzsd3wkbkCRSgAAUoQAEKKCqgcjig370TpgVilPCWklHCnbtJyTj2gYMZJazoLLDxeBBIpOKJvzcf22HxJB4+f+xjDAhIUcjzPoNx/ZoSUcieHj0hTJiILU27YfZlW8Q9bV07A/82sIlUhHnMu08iduSJFKAABShAAQpET0CKEl6xDKZFC6A/ffJplLCrVh3Yh42AZepMRglHj5stJYgAiyfKTCQ3jFXGla1SQFEBKQp5tRiFPB/6c2eA4r1Srlevi6Ote+Boh3640LAlBJU6rH78ZmI7ZJl1yLc4ufdJWHI8mAIUoAAFKECBqAj4ooQXzPVGCd+/JzUr6A1wtmsPy+RpsI0cG5WUwqj0l41QIAYFEqF4wrSdMBYWH9sJA4uHJq2AVqNCulED99592PSzP6HdqX2od/+a5FFkTMHxJh1wtGN/HG/VDYUp6SGdvjvgJbStkyk9tiM+vsMXBShAAQpQgAIUUFpAihLeuA6meWKU8KHno4RnfgOOlzsC6vD+KKR0v9k+BWJVIBGKJ6Kt/34n4n/nnidlrDgWT2L1o8h+xZKATquW9js5f68Av1h3VupaRv4jdDiyFe2O7kCrS8dhdNohqFQ4X6sxTrTphSMv98W1Oi8FHMb49rUxsu2L3PckliaZfaEABShAAQokoIDu5HGYF38ROEr41ddgmfg6o4QTcN45pIoRSJTiScVoyb8KH9uRb8UjKRBzAmLCjpi0c/j6Y/xpy8Xn+qdxu9D8/FG0P7gZbc7sRa3H96VjHqRm4K996qOg4UDcf2kE7AaT9PMBzV/AG13qwu70oMjmirnxskMUoAAFKEABCsSngBglbNy6GaZ5s2DYsxvifxdfnsxM2HuIUcLfZJRwfE4tex2DAiyeKDMpLJ4o48pWKVAhAjqNCmlmHXIL7PjB0hMhr1kt9xaaHliN9if3Ytikc3hiBOo/Brrcq4K6xh4YM+GH6DCwM6wON6xM3AnpyQMoQAEKUIACFChbQIoSXroYxq+WlowSbtQY1lHjGCXMxUMBhQRYPFEGlsUTZVzZKgUqRECtViEzRSdd61vzD8Ph8si+rtV6FrbrX+CGYz/OVXkClxowOYF+d40YqG2OAf2+i2p9xkHQedvniwIUoAAFKEABCgQT8EUJi+mAhh1ilHCedLhgToG9SzdYZn4D9n4DGCXMZUQBhQVYPFEGmMUTZVzZKgUqTCAjRQeNWoVfrjuLc/cKIrquUyiC885XMHm2YIvzPO4bvY/stMgF+j2uguEtJ6HtmP8HVY1aEbXPkyhAAQpQgAIUSEwBzZ3bMK5cBvPiz6E7fepZlHDtOrAPHQnLtJlwNm+ZmIPnqCgQowIsnigzMSyeKOPKVilQYQJGvQZmgwZHr+fhD1suRHzdIS1rYFKnOnC43NhzajNWbPgQOx4exNeZDggqIMMG9L2lw5CUTug//D2kdR3CXe8j1uaJFKAABShAgTgVEKOED+6DSYwS3rShZJRw+5e9UcKjxsGTHjrlL04F2G0KxLwAiyfKTBGLJ8q4slUKVKhAVpoeKgCf7b6CnRcehH3tGulG/PeYltBq1HhS5ITbIzxt45ElF+s2/xo5xz7HgZSHyNcDKgFof0+FAQUvYGjnN9F8+LsQsqqEfV2eQAEKUIACFKBA7AtIUcIb1sA0fw70R/2ihKu/AFv/QbDOeJtRwrE/jexhEgmweKLMZLN4oowrW6VAhQr4UnfEPU9+uvI07ubbZF/foFXjg5EtUCvTFDJlxy24cfjrdVi+4UPssZzGxQzv4z3Vi4B+d4wYUbUvuo/6Hkxtu8u+Pg+kAAUoQAEKUCD2BKQo4UULYFizCtob18WdSyBotXA1bwnrhNdhmfAao4Rjb9rYIwpIAiyeKLMQWDxRxpWtUqDCBcRHd8RHeGwuDxYduI7t53ND9qFhtRR8s09jVEvVS3ebiHedhPO6k3cVqzf8ApvOfYXD6fmwagGtB+hyW4WBjvoY1Puf0XDwdGmjOL4oQAEKUIACFIhdgadRwnM+hWHfnpJRwr36wjLzHUYJx+70sWcUKCHA4okyC4LFE2Vc2SoFKkUgxaiFQaeWrn3y1hOsPHYLNx9bYfdL4dGqVaiebkSPxtkY2vJFqFSAy+1BgdUF4dnTOmH33+GxY9+RJVi++WPsES7jZqo3+afuE6Df/VSMqDcCXUa9B+1LrcJumydQgAIUoAAFKBB9Ae3FCzAtWwzT8iXQXroIeDzSfmauRi/BOmY8LJOnwl23fvQvzBYpQAFFBVg8UYaXxRNlXNkqBSpNQCyemI1aaQ8U36vA5sL9AjuyzDpkmfVSwcT3sjs9sNjdEMpTOQkw2kt3j2P1+p9j6/VNOJZhgVMDiCE+PW9pMFDdFEMGvIcX+r4CQa+vNCtemAIUoAAFKJBMAt4o4R2QooS3b4X6SXGUcEpxlPAMRgkn03rgWBNXgMUTZeaWxRNlXNkqBSpVQCyOiI/w6LRqiHealH6Jj+g4XR5pjxP/zWGV6nSRsxDbdv4da/b+BXt0t5Fr9t7i0uQh0P9RFoY1m4CXx30P6hq1leoC26UABShAAQokpYAUJfzVUpiXfAHdGb8o4Tp1YR82EpYpMxglnJQrg4NOZAEWT5SZXRZPlHFlqxSIKQG1WgWxhiLeXCIG6UT7LpNwB3vmyi6sWP8z7Mjdh1NZDnhUQJod6C1GIZvbY+Dw7yOj61BGIYcLy+MpQAEKUIACvijh+XNg3JzzLErYYICjfQdYxSjhkWMZJcyVQoEEFmDxRJnJZfFEGVe2SgEKyBTIsz7Ehs2/w4Yj87A/5QHyDIIUhdzmvgr9C6pjWMeZaDn8n4Eq2TJb5GEUoAAFKECB5BKQooTXr34WJexwSABuMUp4wGBYp7/FKOHkWhIcbZILsHiizAJg8UQZV7ZKAQpEIOARPDh6dj2+Wv8hdhWdxPlMbxRytgXod9uAYVV7odeI7yOlfc8IWucpFKAABShAgcQRkKKEF86Hcc0qaG7eeBYl3KKVN0r41UmMEk6c6eZIKBCWAIsnYXHJPpjFE9lUPJACFKhogdwnN7A655fYeGYpDqU/QZEO0HiATndU6O+oi6E930XjIW8yCrmiJ4bXowAFKECBChdQFRXCuHUzTHN9UcIWqQ+ezCzYxSjhN9+Bo2t3CDpdhfeNF6QABWJLgMUTZeaDxRNlXNkqBSgQZQGXx4l9R5dgxeZfYbfrAq6le6OQa+UD/e6lYHidYeg2+nvQN2kT5SuzOQpQgAIUoEDlCEhRwl8uhGnF0pJRwo2bFEcJT4O7Tt3K6RyvSgEKxKwAiyfKTA2LJ8q4slUKUEBhgRu5Z7Fi3c+w9coGHMkogkML6N1A95saDFS9hMED/g21+01iFLLC88DmKUABClAgegJPo4TnzIJh57aSUcJde8Ay8xuw9+kHwWSO3kXZEgUokHACLJ4oM6UsnijjylYpQIEKFLC6LNi1exZW7v4D9mhu4m6KNwq50WOg/4NMDGv6KjqNex/qF+tUYK94KQpQgAIUoEBoAW+U8JcwLy6OEna7AZUKLjFKePgoWN6Yzijh0Iw8ggIU8BNg8USZ5cDiiTKubJUCFKhEgbNX9mJVzofYfm83TmTa4VYDKQ6g120tBhvaYeDw95HdbQSjkCtxjnhpClCAAkkr4HZDf2g/zPNmwyBGCefelygEKUq4I6xTpsM2fDSjhJN2gXDgFCi/AIsnXsOWfWfg9LbZT0HF/y6+/H8WjjaLJ+Fo8VgKUCDuBJ5YH2HL1j9g7eHPsNeUi8dG710pre6r0LegGka0n4Y2I7/LKOS4m1l2mAIUoED8CEhRwutWwbRgDvRHD0N8PEd8uV+oUTJKWKWKn0GxpxSgQMwKsHgSuHDiK5qULqrInUgWT+RK8TgKUCDuBcQo5OPnNmLl+g+xs/A4zmY4IaiALCvQ544Bw7K6o9/If0dK+15xP1YOgAIUoAAFKldAd+KYN0p47Wpobl6XOiNotXC2bA2bGCX8ykRGCVfuFPHqFEhYARZPWDxJ2MXNgVGAApUj8CD/Ftbl/Ao5pxfjQFoeCvWAWgA6iFHI9toY1vNdNBnyNqOQK2d6eFUKUIACcSXwNEp49icwHNgLlaU4SjgrC/be/WCZ8Q1GCcfVjLKzFIhfARZPShZPAj2+E8mjO7zzJH4/E+w5BSgQRQExCvngsWVYuelj7HSdx5V0t9R6jUKg310zRtQeiu6j34ehSdsoXpVNUYACFKBAPAuIUcLmJV/A6IsSFgRpPy1n4yawjXsVltemMEo4nieYfadAnAqweMLiSZwuXXabAhSIR4FbD85h9fpfYPPFNTiUWQi7FtC5ga631RggNMbgAf+K+v0mMwo5HieXfaYABSgQocCzKOFPYdixDer8J1JLQkoq7F27w/LmO94oYaMpwivwNApQgALlF2DxxGsYaIPYSPc7EdvjnSflX5tsgQIUSHABm9uKfXvn4asdv8ce9XXcSvVII66fB/R7kIERTcej8+j3oalVP8ElODwKUIACyScgRgmbli+BaYkYJXwa8I8SHjEalslilHCL5IPhiClAgZgVYPFEmalh8UQZV7ZKAQoksMCFGwexeu2H2Hp3B45n2eBSAyYn0POWFoOMbTB4yPuo1mMUo5ATeA1waBSgQAILiFHCB/fBPH/O81HCL3fyRgkPG8Uo4QReAhwaBeJdgMUTZWaQxRNlXNkqBSiQJAIFtifYvu1PWH3gE+wx3cNDkzcKuXmuCn3zq2JEu6loO+q7UFepliQiHCYFKECB+BNQP3oI49pVMH8+F7pjR0pGCQ8aAuvUN+F4uSPAKOH4m1z2mAJJKMDiiXfSfY/tBFoC3DA2CT8YHDIFKBA7AgIEnDy3Gas3fITteYdxOssbhZxhA3rf1mNIZlcMGPlDpL/cJ3Y6zZ5QgAIUSFIBKUr4i3kwrhOjhG9IClKUcKs2sE6cDKsYJZxdNUl1OGwKUCCeBVg8eT6qOBrzyTtPoqHINihAAQoEEHhccBcbNv4GG05+gb2pj1BgEDeaAtrdU6GfpSaG93wXzYe8DaSk0Y8CFKAABRQWKBElvH8vVFa/KOE+/b1Rwl26QdDpFO4Jm6cABSigrACLJyyeKLvC2DoFKEABBQVcHheOnFiBlRt/iZ32r3Ex0xuFXL0I6HvXjGE1B6LnqB/A3Ky9gr1g0xSgAAWSS0B74bw3SnjlMmgvXQR8UcIvNYVt7CuMEk6u5cDRUiBpBFg8YfEkaRY7B0oBCiS+wJ0HF7A252NsOr8SBzMLYNUCWg/Q+Y4aA9wNMbj/d9Go/1RGISf+UuAIKUCBKAqIUcKGXdthmvMpDDu3l4wS7tbDGyXcuy+jhKNozqYoQIHYE2DxhMWT2FuV7BEFKECBKAg4PHbs3zMPK3b8HrtUV3EjzRuFXCcf6JubjpGNxqLLuO9DV6thFK7GJihAAQokloAUJbx0MUxfLoTua78o4br1YB8xBpbXpzJKOLGmnKOhAAVCCLB44gUSN4yNZGPYsni55wk/ehSgAAViTODyjSNYu+4jbL6zFUczrXBqAKML6H5biwG6lhg+9Puo3mMMo5BjbN7YHQpQoIIEfFHCcz+DcctGqB/kShcWDEY4OohRwjNgGzqCUcIVNB28DAUoEHsCLJ4ET9oRZyySokpYxZPSUT+hLhjs+LJig3xt3n5ojb1VyB5RgAIUqGCBIkchdm3/G1bu+wv26O/gfoo3Cvmlh0C/J9kY0WYq2o/+N2gYhVzBM8PLUYACFSkgRQmvEaOE50B37ChUTod0eXeNF2HzRQm378Ao4YqcFF6LAhSIWQEWT5SZGtnFk0C3vAS7DSbU8aFuoWHxRJkJZ6sUoEB8C5w+vwVr1v8c2/IO4mSWAx4VkGYHet3RY3BaJwwa+UNkdugf34Nk7ylAAQoA0B0/+ixK+NZNyeRplPCkybCOZ5QwFwoFKECBQAIsniizLlg8UcaVrVKAAhRQXOBJ4X1s2vQ7rDs2H3tTHyLP6I1Cbn1fhb7WFzGi27fQcsg7UKWmK94XXoACFKBAeQWkKOEtm2Ca/QkMB8QoYe9dyJ6sKrBLUcJvM0q4vMg8nwIUSAoBFk+eTXO4T88EWyCVWjwp3TH/x4B450lSfK45SApQIEoCHsGDYydWYmXOL7HTdhpns1xSy9kWoM9dE4a90A99xvwQKc06ROmKbIYCFKBA+QWkKOHFn8O4cjm0l/2ihJuIUcKvwjLpDbjr1C3/hdgCBShAgSQSYPHEO9mhnoYJd0lUWvEkUEf9B8fiSbhTyeMpQAEKPBPIfXQF6zd8jA1nl2N/Zj4sOkDjATreVaOfqz6G9f8uXuo/nVHIXDQUoECFCqgcdhh27fDeXbJrx7Mo4dRU2Lv1hGXmNxglXKEzwotRgAKJKMDiSfCknVBbiJS1Jlg8ScRPC8dEAQpQwE/A5XHiwN55WLH999glXMbVDG8Uck0xCvlBGkY2HI2uY/8dhtqN6EYBClAg6gJSlPCXC2H6chF0Z88Abre0saurbn3YRxZHCTdrHvXrskEKUIACySrA4gmLJ8m69jluClCAAlEVuHn7FFav+xCbrm/EkSwL7FpA7wa63dagv7Y5hg55H7V7jAc0mqhel41RgAJJIuB2S3uWmObNLhklbDTC8XInWKbOhH3IcEYJJ8ly4DApQIGKF2DxJA6KJ/63v4R6vijU+3xsp+I/ZLwiBSiQfAIWZyH2bv8HVu75M3YbbuNOcRRyw8dA38dVMLL1ZHQc/T1osqsnHw5HTAEKyBYQo4RNq7+C6Yv5jBKWrcYDKUABCigjwOKJ1zVUzSFcfdmP7fgu7n8B/w1eA3Uu1M62wd5n8STcqeTxFKAABcovcPbCDqzd8HNsfbgPx7PscKuBFAfQ464Og1M6YNCIH6Jqx0HlvxBboAAF4ltAEKA7cQzmz+fCuH4NNE+jhHVwtm4D60QxSngCPNlV43uc7D0FKECBOBRg8eTZpIWqSYQzvWEVT8JpuLzHsnhSXkGeTwEKUKB8AvlFudi2+f+w5sgc7El5iEcmQWqwZa4KfQtfwIiu76DNsHcZhVw+Zp5NgbgRkKKEN2+EaY4YJbyvRJSwre8AWKe/BXvX7oBWGzdjYkcpQAEKJKIAiyfKzCqLJ8q4slUKUIACCSUgRiGfOLkGq3N+gR2WkziT5YKgArKsQO97Rgyp2hsDxnyA1OYdE2rcHAwFkl1Ae/7csyjhK5cAQQDUajibNJPuLLFOeJ1Rwsm+SDh+ClAg5gRYPFFmSlg8UcaVrVKAAhRIaIEHedeRs/7X2PD1EuzLeIJCPaAWgJfvqtHXVRfD+34XzQbMZBRyQq8CDi4RBaQo4Z3bvVHCu8Uo4XxpmJ7UNDi6F0cJ9+oDwWhKxOFzTBSgAAUSQiCZiye+fU5KP65TemJLb0EiZ+JZPJGjxGMoQAEKUKBMATEK+fC+z7Fq2++xQ7iAS8VRyDUKgD4PUjGs3gj0GvcfMNZpTEUKUCAGBcT9SkxLF8G0dHHJKOF69WEbOQbW16bCySjhGJw5dokCFKBAYIFkLp4ouSZYPFFSl21TgAIUSEKB23fOYO26j7Dx2nocyrLApgV0bqDLHQ36a5pg6KD3Ua/XBEYhJ+Ha4JBjRMAXJTxnFozbNkH94IHUMUGMEu7YGZYpM2EbMhxCWlqMdJjdoAAFKECBcARYPKnkqOJwJisax3LD2Ggosg0KUIAClStgc1mwb9snWLXnz9ipu4Fbad5NZ+vnAX0eZ2Fkq9fRedR70FZ9sXI7yqtTIMEFpCjhVV/B9Pk8KSVH5XRII3a/WBO2QUNhnTIDjvYdAJUqwSU4PApQgAKJL5AoxZPyJOUEiin2zXyw94KtDt55kvifHY6QAhSgQMwIXLiyB+vWfoQt93fjaLYdLjVgcgI97ugwMKU9hgz/Eap3Ghwz/WVHKBC3Ar4o4QVzvFHCt29JQxF0YpRwW1hfewPWMa8wSjhuJ5gdpwAFKFC2QCIUTwIVOMIperB4wk8IBShAAQokjEBh0SPs2vpnrDz4CXan5uJBcRRyswcq9CmshpFd3kHboe9Ck5aZMGOO9YEMeuWfnuvixqV/efqzQO+Lb4rHiO/5Hyv+PNDPYt0gnvunKiiAcXMOTHNnwXDQL0q4SjZsffvDOv1t2Lt0Y5RwPE8y+04BClBAhkAyF09CbRQr8kWyWax4Hu88kbH4eAgFKEABCigrIEDAqZNrsTbnY2wtPIZTVZxSFHKGDeh114DBVXti4OgPkNGii7IdSfLWQxVAghVDSr/HwknFLCYpSnjhfBhXfwXtlcvFUcIaOJs2hXX8RFgnToa7Vu2K6QyvQgEKUIACMSGQCMWTQJDRuvMk0kli8SRSOZ5HAQpQgAKKCTzKu4ktOb/F2lMLsTcjD/kGsdoPtLunQh9HHYzs+x00H/gWoDco1odkbDhaxRMWTpRbPU+jhD/7Bwy7d0Jd4Bcl3KMXLDPehp1RwspNAFumAAUoEAcCiVg8CadwotQUsXiilCzbpQAFKECBqAi4PC4c3b8Qq7f9Dttd53Ehyy21W60I6HM/BUPrDkXv8R8gpU7TqFwvmRuJRvGEhZPoryApSvjLhd4o4XNfA263tLGrq14D2EaNgXXSFEYJR5+dLVKAAhSIW4FEKp74HsOJ5FGb8u6bUnoBsHgStx8JdpwCFKBAcgrcvXsW69f/Ehsvr8H+rEJYdYDWA3S8q0E/NMbwQd9Dw96vMQo5guUhp3hSulnfPie+/VBK73sSQTd4in+U8NZNUD/0jxLuAsu0N6WEHEYJc6lQgAIUoEAggUQpnpTnbhNuGMvPBgUoQAEKUMBPwOG24cD2T7Fy1x+xU3sD19M90rt18oHejzIwstkkdB3zPvTVatFNhoCcDWPLKo74Ci+880QGdIBDpCjhlcth+sIXJeyUjnK/WAu2wcVRwu1eZpRwZLw8iwIUoEBSCSRC8aQ8hRNxslk8Saolz8FSgAIUoEC4Apev7Mf6dT/H5ns7cLiKDU4NYHQBXe9qMdDYFsOH/wgvdB4WbrNJc3yowofcDWNDtZM0oMEGKkYJHz8K8/zZMOasKxkl3KYdrDBuWZQAACAASURBVJPEKOHxjBLmYqEABShAgbAFEqV4Emjgch/fYfEk7GXDEyhAAQpQIFkFLJY87N76F6w6+A/sNN3D/RRBomjySIXeBVUxqsNbaD/yX6BJzUpWoufGHaroIbd4IjYcqq1kRJeihDdtgHnup9AfPACVzSoxeMQo4X4DYZ32JqOEk3FhcMwUoAAFoiyQCMWTaJBwz5NoKLINClCAAhRIOoEzp9Zj3YaPsaXwME5UccKjAtLsQI97BgzK6ooho3+CrJbdks7Ff8ChCh7hFE9YQPHKSlHCX8yDcfUKaK8WRwlrNHA2aQbrKxNhnfA6o4ST+lPHwVOAAhSIvgCLJ89MfRvO+n4i986VQLPCDWOjv1bZIgUoQAEKxLjAkye3sS3n91hzcgH2pD/GY6M3CrlVrgp97LUwsvd30GrgW1AZTDE+EnYv1gR8UcLmWX+Hfo8YJVwgddGTlgZ7j96wilHCPXtDMHJtxdrcsT8UoAAFEkWAxRNlZpLFE2Vc2SoFKEABCsSJgEfw4Pj+RVi99XfY5voaZ4ujkLMtQO/7ZgyuMxj9x/0YqXWbx8mI2M2KFpCihJeIUcKLoDt/9lmUcH0xSngcLJPegKtps4ruFq9HAQpQgAJJKsDiiTITz+KJMq5slQIUoAAF4lQg994F5Kz/GBsursTerAJY9IDGA7x8T41+aIThA7+Hl3pPZhRynM5vVLrtcsFwYC9Mc2bBuE2MEn4oNSveTeLoVBwlPHAIo4Sjgs1GKEABClAgXAEWT56J+R7b8T2uU54UHxZPwl2JPJ4CFKAABZJGwOV24OCOWVi18w/YobmGKxneKOSaBUDvh+kY3vQV9Bj77zBWq5M0Jsk6UClK+KulMC2cD93J41A5i6OEa9aCbchwWCdPg4NRwsm6PDhuClCAAjElwOKJdzp8hZLSBZNICygsnsTUMmdnKEABClAglgWuXTuInLW/xMY7W3GoihV2LaB3A13uaNHf0ArDhv8QdTqPBFSqWB4G+yZHwD9KeMNaaO7cls4SdDo4xSjh16fCOmoso4TlWPIYClCAAhSoUAEWT54VTvyLKL5JYPGkQpcjL0YBClCAAskuYLHlY9+Wv2DVgX9gp/EO7qR6o5Ab5qnQ+0k2Rnd4Ex1GfBfaNEYhx8takaKEN66Hee4s6A/5RQlnV4Wt3wBvlHDnboBWGy9DYj8pQAEKUCAJBVg8YfEkCZc9h0wBClCAAvEicPZ0Djbk/Aqb8w7iWLYDbjWQ4gB63NVjQGZnDBvzU2S37B4vw3mun1qNChq1WrqpRryvxiMIEATvf7rc3sJRPL60587CvHA+jKu/gvbqFUiDEqOEm4pRwpNgffU1RgnH48SyzxSgAAWSWIDFE+/kB3psJ9K7TsT2+NhOEn+oOHQKUIACFFBGID//DnZt+hNWHZuDXWkP8ag4lbbFAxX6WF/EyF7fQdtB34j5KGSdVg2DVg29Th0USiydOJ0e2J1uOGO8kCJFCe/YBvNn/ygVJZwOe49e3ijh3n0h6A3KLA62SgEKUIACFFBYgMWTZ8C+DWN9P/FtHBvJFLB4Eokaz6EABShAAQrIFBCjkE8d+BJrxChk+2mcruKCoAIyrUCvXBMGvzgAg8b/F9LqVWwUssvjglYd+PET8S4Ts0EL8T99rytXnuDu3SLk5dmQn+9AeroBWVkG1KiRgvr1M54e53J7YLF7IP5nrLykKOFFn8O0fAl0584CHre0L42rQUPYRo5llHCsTBT7QQEKUIACURFg8SQqjM81wuKJMq5slQIUoAAFKBBQ4OH9S9i84TdYd34p9mQVoFAPqAWg/T01+ggNMLL/e2jad6riUchuwY0vzy7ApObTSvQzxaiFofhOkxs38rFs2UUcOnQXj/NsZc5odrYJXTq/iDFjGqNWrVTpOLvTgyKbq3JWgS9KePYnMG7bAjEpR3xJUcKdu8Iy/S3Y+g9ilHDlzA6vSgEKUIACCguweKIMMIsnyriyVQpQgAIUoEBIATEK+fCO2Vi964/YobqMi5neuzVqFAK9HqZhWOMx6D3uA5iq1w3ZViQHrL20AjlX1uB3A/8GjUqFVJNOutskN9eK2bNPYfuOG2E326d3Hbz5ZiuIBRVxL5RCq0vaF0Xpl/rhA2+U8KIFz0cJDx0By+RpcLZtzyQkpSeC7VOAAhSgQKULsHjinYLSj+z4T0wkj++weFLpS5sdoAAFKEABCngFbt84jg1rfo6c25twoIoFNi2gcwOd72nRV98cw4f8EPW7jolqAWDo4h6ok1YXC19ZBJ1Gi5OncvHzjw4gv8Ae8bRkpBvwox91QcuWVeERgPwiZ/QLKIIA/bEjMM+fDUPOulJRwu1hnVwcJVwlO+Jx8EQKUIACFKBAPAqweFIybSdac8jiSbQk2Q4FKEABClAgigI2ewH2b/4bVu//G7Ybb+NWmvfujXp5QO/8bIxoNw1dR70HXVqVcl310N39GPNlPwxsOAjvZv8v/vS/p8rVnv/J33uvI/r2rQu3R8CTIme525WihDeshXn+Z8VRwt5HiTxilHD/gbBOncko4XIrswEKUIACFIh3ARZPWDyJ9zXM/lOAAhSgAAUiFrh4Zgs2bPgYmx/vw+GqDrjUgNkJdL2nx4D0Dhg+6j9RvXXvsNtPM2sx5asJWHl+BdILG6P96R9D6y6OBwq7tZIniNHGP/95T7RoUVVK4SmwhF9AEaOEU76YC8PqldBe848Sbl4cJTyJUcLlnCeeTgEKUIACiSXA4gmLJ4m1ojkaClCAAhSgQIQChQX3sXvTH7H68GzsSH+IB2bvXSnNHqrQy1IDo3t+G20HvQONMSXoFQw6DVKMGuy/eAL9FneEoPIgtaiuVEDRu54l6ETYTem01FQ9/vTHAdIeKOL+Jw5X8BQelc0Kw64dMM/6Gwx7dkNVWCC140lLh71Xb1invcUo4fJMCM+lAAUoQIGEF2DxhMWThF/kHCAFKEABClAgXAEBAs4cWIa1W36LrbaTOJHtjULOsAHd75swuEYfDB73U2Q2aPNc05mpeqhVwAcf7MLCgg9xq8ZG6RijvRo6nPovGO1Vw+1OwOM7dngBP/1pD2n/k7xCx3PHiFHC5kULYFy2BLrz5/yihBvBNnocLBMnw9WkaVT6wkYoQAEKUIACiS7A4ol3hsUNYyPZGLas9cE9TxL9k8PxUYACFKBAUgk8enAV2zf8Dmu+XozdWU+QbwBUAtD2vhq93HUxesB7aN53OvQGPdJMWpw9+wjfe38bHNon2NPh23BrvBvF6h1ZUgHFbKsRFb///X1/NGqUiQKrC06bA4b9e2ESo4S3+0UJm0xwdOoKy4y3Yes3kFHCUZFnIxSgAAUokGwCLJ4ET9oR10MkRRUWT5Ltk8TxUoACFKBA0gi43E4c2zUXa3f8AVuFizhfxfvITDUL0P9JVYxqMR43HwzDxv3evUgu1VmEq3WWPvXROdPQ/swHSCtqUG6zcT0y8M4L16Ba+AU0u3chV+/E+sZAW/cLaNxlLCyvT2WUcLmV2QAFKEABClAAYPFEmVXA4okyrmyVAhSgAAUoEHMCd2+cwKZ1H2PD9fXYl22BRQdoPUDbW3rUv90AEAZiZcc5cGoLn/Zd4zag3Zn/QGZBs7DGo4KAJvmX0fXGHnR5cBS1PTexvT6wsakOOU218GRk4g9DZqN5o15htcuDKUABClCAAhQILsDiiTIrhMUTZVzZKgUoQAEKUCBmBTRqFYxaB76c+2ss2jYLX9e+g5uZ3rtSTA7Aqi/ZdZVHizbn3kPVxx2CjsnssqJT7lF0vbkHHZ6cwuUaFmxsBKxqpMPBOi64NAL0Gj2+2/H7+OcO70On1sWsETtGAQpQgAIUiFcBFk+8MyfueVLWi4/txOvqZr8pQAEKUIACFSig06ql/U7WrbuCP/35qLdooj4JS9qX2NHsa7g0z3dGJajR4sK3UeNBzxJvmtw2jLm4Cp3vH0YV3WXpUZz1jVTY2FCNfJO7xLGNza2w6I0FqJPSFM4QqTsVyMFLUYACFKAABRJKgMWT6G8WKy4Q3nmSUB8TDoYCFKAABSgQWsCg1yDFoMGyZRcw67OTsBru41LdL3Cv6h7v7rJlvQSgztFxaGJ7HZrcXHjybuBR6jF0rbse6xuqcTk7cAyx2qNDgxsT8LNhH2DsmCYosrlhd5YsrITuNY+gAAUoQAEKUECOAIsnLJ7IWSc8hgIUoAAFKECBEAImvQYmgwZ/X7AbvzrwEW69sBGCKnDh42lTggq6wkyoHmXAcKIVLF0OwF01F1AHKbYAyChoihYX/llK7Zk+rSUmTGgKq90Nq4PFEy5UClCAAhSggBICLJ6weKLEumKbFKAABShAgaQTsLnz8aejv8Ef9/8BDsH23Pj1zgykFNVFqkX8pw5Si+ohxVIHGuHZZig3hRxc7DgfbsPz5/sarHt7FBpdew1qwbu3yT+/2x7DhjVAkc0FuzNEsSbpZoUDpgAFKEABCkRHgMUTFk+is5LYCgUoQAEKUCBJBaxOC/5+/A/469HfI9/+BAa1Efr8mlJxJNUqFknqIsVSFwZnpiwhm/4RTjb7OfJTrwU9Xv+4JlIK6+ONfoPxRq8RaJzRGg7ueSLLmAdRgAIUoAAFwhVg8cQrJm4YG8nGsGV5c8+TcFcij6cABShAAQrEmYBbcGP79U3IubIGVc3V0bJqS3Su0x7prpp4662cco3Go3LhfIPPcKvGxhLt6NzAh5uBmxnArpo6nKrhhkPnvdtErVIjy1AFL1Vpjm61emJoo9FoVqUltGptufrCkylAAQpQgAIUAFg8CZ60I66RSIoqLJ7w00UBClCAAhRIMgEVgKw07yM477yTg9t3CsstcLfqLnzd6K/waBxP26qeVxsff9ke3XKPopHjJs5VBQ43NGJH0xTsqafCeW0eXIJLOl4FFaoYs9Ekuzm61mRBpdwTwgYoQAEKUCBpBVg8UWbqWTxRxpWtUoACFKAABWJaQIwqFiOL//rXY1i95nJU+lpkuoljzX8Bm/H+0/bEPU/q3xqP1/pnY3rWZagXLYR65w6onE54VMCZFi9gX/8WyGmsxgH3ZdwquFGyoGLKRpMqzdG1Vi8MbTgKzaq0gFbt3UOFLwpQgAIUoAAFnhdg8USZVcHiiTKubJUCFKAABSgQ0wIGnQYpRg2uXcvHt7+9CcEzc+QPxaWx4vRLf8CDKoekk1SCBl2P/xrzfz8TNV9M9cYUW+0wHNgL02efwLh9C9SPHkrHCiYTbJ274Pjrw3CwsRmb7m7HidwjuJl/vVRBpSqaZDVD19osqMifGR5JAQpQgALJIsDiybOZFvc98X9F8riO73wWT5LlE8RxUoACFKAABUoJZKbqoVYB//d/R5Cz8WpUfa7VXIVL9T6HoHKjproJzr1/AmqVFnmFzx7r8V1Qc+smzIsWwLh8CXTnzgEeN6BSwdWgEWyjxqJwwms4W12N4/cPY8vVDTieewS3WFCJ6nyxMQpQgAIUSBwBFk+8cxlow9jybCLL4knifEY4EgpQgAIUoEBYAnqdGqlGLYqKHHj33c14+Mga1vmhDs5LO4fTzX8Lm/Yx/qPnT/CvnX4ER4iIYpXDDsOObTDP+jsMe3ZBVVggXcaTlg57z96wTn8L9t594dbpcPHxedkFlSENRqJ5trgpLR/5CTVvfJ8CFKAABeJbgMWT4Ek7kRZQWDyJ788Fe08BClCAAhQol4Bv75OLFx/jvfe2w+3xJuJE46VRq/GfH7fGewdm4tDtA1g7cRdaVm0TVtPac2dhXjgPxlUroL12BRAEQKOBs2lzWF+ZBOurk+CuVdtbYBE8uJR3AUfvHcTWqzneO1QKrsPlKd6UViVuSlsVTbOao2vtnhjMgkpYc8GDKUABClAgPgRYPGHxJD5WKntJAQpQgAIUiDOBjBQdNGoVtm27jl//xrtXSTRe73+vE/r0qQO7y4Ufbf4RNl1dhw2T9kKv8Sb9hPtSFRTAmLMO5nmzoD90ACqbzVs0ya4KW/+BsE6dCXvnboD2WeSxr6By7O5BbL62ASdyjz5XUMk2inuosKAS7nzweApQgAIUiE0BFk9YPInNlcleUYACFKAABeJcQK1WId2shVqlwqlTD/DRR/uRX2CPeFQZ6QZ88EFXNG+eDY8A5Fuc8HgEbLm2Aadyj+M7Hb8fcdtPTxQE6I4fRcq8z2DIWQfNndvSW4JOB2eb9rBOngrryDFSYaX0S4AgPfIjFlS2XM+RHv2RUn7871AxVEVTMeWndi8MbjCCj/yUf8bYAgUoQAEKVJAAiydeaO55UkELjpehAAUoQAEKJJOAuHFsqkkHrUaFBw+smDv3DLZsvRY2wYD+9TBtWgtkZ5vg9ggoEAsnflE+1/OvooopG6m6tLDbDnaCmNhjWv4lTIsWQHfyuBSFLL7cNWvBNngYrG9Mh6Pdy9JGtIFevoLK0bsHsfWaWFA5gluFpR75MVRFk+xm6F6rDwY1GM6CSlRnkI1RgAIUoEC0BFg8eSbJtJ1orSq2QwEKUIACFKBACQHfHijiD6/fKMDKFRexf/8dPM7zPiIT6FUly4iuXWti7NjGqFkzVTrE4fKgyOaStiip8JfL5Y1CnvMpjFs3P4tCNprg6NQFlulvwTZgMIS04AUc/4KKeNfMiftHyyioNEe3WrxDpcLnmRekAAUoQIGAAiyeKLMwuGGsMq5slQIUoAAFKBC3AmIKj0mvhUb9bAjXruXj9u1C5OXZkJ/vQHq6AZmZBqlYUq9e+tMDXW4BVocbTlf0Np4tL6QYhWxa/AVMyxZDd+7ssyjk+g2lKGTLpDfgatpM1mV8BZUjdw9Id6gEKqiIe6i8VKU5utfqhYENhqNFdium/MjS5UEUoAAFKBANARZPoqH4fBuVWjwJdgvN7YfRjUtUho+tUoACFKAABRJXQKdVw6BTQ/zPwA+7eMcu3lwiRhCLd5vEUtEk0MxIUcg7t0tRyPo9O6Eu8ItC7tEL1hlvS5HIgtEke2LFgsqlxxdw+O7+4oKK+MhPyT1UpE1pq3jvUBELKs2rtIQuwo1zZXeMB1KAAhSgQFIKJHvxJFgUcaQxxeJCqrTiSajNW1g8ScrPOQdNAQpQgAIxKiDuhSJGD4tbhoiFFI8gSI/kiP8p3m0Sry/t+XMwfzEPxtVfQXvVPwq5WXEU8mtPo5DDGePTgsq9/VJs8glpD5XABZXutXpjQINhLKiEA8xjKUABClCgTIFkLp7IKY7IOSbgH2AEoVKeRg658y2LJ/xtQAEKUIACFKBARQpIUcgb18M81xeF7L0LVopC7jcA1qlvwt6lZBRyOP2TX1BpIT3yw4JKOLo8lgIUoAAFfAIsnswOuhhYPOFnhQIUoAAFKEABCkRLoDgK2Tx/Dow5a6G5fUtq2RuF3A7W16bAOnpcwCjkcLrwXEEl9whu5d+AS3BJzahUKvge+eleuw8G1B/KO1TCAeaxFKAABZJQgMUTFk+ScNlzyBSgAAUoQAEKxIKAFIW8YhlMC+dDd+JY2FHI4Yzh2R4q+7D12kacCFJQ6Va7NwbW5yM/4fjyWApQgAKJLsDiCYsnib7GOT4KUIACFKAABeJBwO32RiHP/hTGbZugfvhQ6rVgNMLRsTgKeeCQkFHI4QzVv6Cy5WoOTj44WsYdKi3QvXYv9K83VEr54aa04SjzWApQgAKJIZDMxRNxBrlhbGKsY46CAhSgAAUoQIEEE5CikJcshGnpIujOnwXcbvF5G7jqN4Bt1DhYJ06Gs1nzqI9aLKhczruIg3f2YOvVjc8XVKBCtklM+WmBHrV7o1+9ISyoRH0W2CAFKECB2BNg8WSGNCmnt5W8A8WX9lv653JnkGk7cqV4HAUoQAEKUIACFAghUDIKeRfUBfnSGZ7UNCkC2Tr9Ldh79QkrCjkcdF9B5dCdvZDuUMk9ilsFfnuoFBdUmlYR71BhQSUcWx5LAQpQIF4Ekr144psnX7HE998jLZr4zq+04onYgWCDYdpOvHw02U8KUIACFKAABcoSeBqFvGYFtFcuQ8p31mjgbNIM1vETYZ34ekRRyOGIP71D5fZebLsuxiYHK6j0Qb96g3mHSjjAPJYCFKBAjAmweKLMhFRq8STYkFg8+f/t3XmQHOWd5vGnqqu6qlr3hYyEBIhDoJaEscwlCR2AuO/7EDo4zDh2YndiN9YbE+vZiAnPbszMeifmj117NmwDkkCAJC4BBnQfXBbY6LSNOXViSxy6uqqru47dzFJ1V5eqOzOr6+26vhWhCFv15pvv+3kzJfrRm/kzs+D0igACCCCAAALlEbBLIa9580Qp5N/IFztRCnnoMLXOujKzK6UXpZC9zCo3UFm/Z5V2EKh44aMtAgggUNECtRaeFFtauNSLRHhSalH6QwABBBBAAAEEnASypZCfXqTwm3mlkCddkCmFfMvtvS6F7DSM3O87A5V3tH7P6u4DlWETdNnoGbqCd6h44aUtAggg0GcCtRKe5D6p0ttHbkqBT3hSCkX6QAABBBBAAAEEeiFgl0Je+aIizyzpWgr51FFqvfo6xR6Yr7YLp9gvou3LTzZQ2XLgbW2wA5Wt2n98nxKpdnsYvuw7VDoCFeuRn0lU+enLReJcCCCAQJ5ArYQn2Wmx88ThEuexHf4MQAABBBBAAIG6FMiWQl70uMLrrVLIX9kMHaWQH1xoByrpAQPKwmMFKp8f/kS/cQxUmjV1tPVS2jkEKmVZKU6KAAL1KkB4Ymbl2XlixpVeEUAAAQQQQACBkgjYpZBXWKWQlyn40R86SyGffqZab7zFfsTHRClkL4PvDFSsR35Waae9Q2WvEqmE3U1mh8oIjR82QdNGz9AsAhUvvLRFAAEEPAkQnnjict2Y8MQ1FQ0RQAABBBBAAIHyCmRLIUee/KVCb23qUgq5bep0RRc+arQUspfZ5wYqG3av0vZDH+qA/chPbqAyXOOHNROoeIGlLQIIIOAgQHhi5hIhPDHjSq8IIIAAAggggIBxAbsU8nNPK/zKi52lkP3+TCnkO+5W7M57lRwz1vg43J6gyyM/u1drx1dbtf9Y/g6V4Ro/dIKmjZmlWWOv4pEft7i0QwABBE4IEJ50XgrZl85mXzjbm/enEJ5wiyGAAAIIIIAAAjUg4Gs5rvCaVYos+pVC77+XVwr5CsXmP9JnpZC9cOYGKut3r9bOQ9088jN0gqaOmaHZY3mHihdf2iKAQP0JEJ5k1jwblOQHJsUGKIQn9XcvMWMEEEAAAQQQqHUBqxTy9q1qypZC3r/PnnE6EFT7ZKsU8gOK3XJHn5ZC9kKeDVTeO/CWNuxeox2HtupAoXeo2DtUZmrmmCvVPHwyVX68INMWAQRqVqBWwpPcUsXZxXJbsjg3ICE8qdlLnYkhgAACCCCAAAKlFbBLIb/yUqYU8rat8rW32SdIWqWQ51yr2NwFZSmF7GWWVqDyxZFP9c7+zdpoPfJzaNvJgUrTCJ03xNqhQqDixZa2CCBQWwK1Ep70ZlUIT3qjx7EIIIAAAggggAACdrWe0JZ3FVn8hMLrV8v/VU4p5CkXK/rgQsWvvk6pgQMrXisbqLy739qhsurEDpX9SqTa7bHbVX6sQGVos6adNkMzxlypCSMmqdEfqvi5MUAEEECgWAHCk4xcocd2in1kx/47JZ1Op4tdFJPHHfg6ZrJ7+kYAAQQQQAABBBCQ1PDlAUWWW6WQn1Pwj7/vLIU89gy13mSVQn6w7KWQvSxUR6Cyb7M27LEe+flQB47tVyKdE6hEhuu8YRMJVLzA0hYBBKpGgPCkc6nyH/1x+9hPocUmPKmaW4CBIoAAAggggAACZgXsUshvbVLkiV8o9PYm+Y8etU+Y6j9AlVYK2YtE10DlxCM/x/YVCFSa7So/M067gh0qXoBpiwACFSVAeGJmOQhPzLjSKwIIIIAAAgggUPUCgY//lCmFvNIqhfypZG1YzpZCvv0uxe66r6JKIXsB73iHyr5N2mjvUNmmAycFKiN03rAJmnbaLM0YQ6DixZe2CCBQPgHCEzP2hCdmXOkVAQQQQAABBBCoKQG7FPLa1Yos+qVCW3JKIQ8ZqtZZVyo2/2HFL50qBQJVO+/cQMV65Mcqm3zyIz9WoGK9Q2WmLh8zW80jJvMOlSpb8Tl3/NAe8ernf15lI2e4CLgTqNfwpFB1nu7Einl8h/DE3fVHKwQQQAABBBBAAIGsQLYU8tLFCr/xmhpySyFPmqzY3fcrdvtdFVsK2ctCWoHK7iOf6e19G+13qOw8aJVNth75Sdjd2C+ljRCoeDEtZ1srOCkUmmQDFUKVcq4O5y6VQL2GJ7l+3b0YlhfGluoqox8EEEAAAQQQQAABzwJWKeTway+raekSBbd+2FkK+TunqnXONYo9+FDFl0L2OulM2eRNWr97lXYetMomE6h4NSxH+0LhSXeBSjnGxzkRKIUA4UlnpZ1CnsUGKOw8KcXVSR8IIIAAAggggAACGYFkUo3vv6cmqxTyOqsU8iH7t9OhsNqmXJQphXzN9VVRCtnrklqBitMOlfOHN2va6FmaPmYWj/x4Be5l+9zdJVZX1g4Up+Ak+31vdqb05theTpnD61SA8ITwpE4vfaaNAAIIIIAAAghUr4BdCnnFs4qsOLkUcvzGWxS9d67az59QvRN0GLkVqLy1b4M27l6rnV9Zj/zsVyKVUza5aYTOG9qs6acRqPTFRZAfluQHKtlQJTuWQu9HcQpccudR6Hy8a6UvVrq+z0F4QnhS33cAs0cAAQQQQAABBKpcoKMU8pO/tEsi+48esWeU7t9f8cumK7rwUcVnzFI6HKnymfY8fDeByvlDmzV1zCxdfho7VEp5MbgJM3Lb9PYxHy9BSynnSV/1LUB4kln/Qo/nFPvIjtUfj+3U933F7BFAAAEEEEAAgbIJ2KWQly3NlEL+7JOcUsjj1XrrnYre80DVlkL2itoZqKzRzq+sd6jk36HXHAAAIABJREFU7FDxZV5KawUq08bM0rTRM+1HfkINYa+nqfv2hCd1fwnUBQDhSecy51fgKabKTrY3wpO6uH2YJAIIIIAAAgggUNkCdinkdWsUsXalbHlXvljMHnBqyFDFZ16h6IJH1HbJZUoHg5U9kRKObvfRz7R573pt3E2gUipWwpNSSdJPJQsQnphZHcITM670igACCCCAAAIIINALgeC2D9X0zBKFX381pxRyQO0TJyt2j1UK+e6aKIXslcgOVPas10arbHKBHSrDrbLJ7FDplrXc4QmP8Xi94mlfjADhSTFqzscQnjgb0QIBBBBAAAEEEECgjAKZUsivqGnpIlmhiq+tzR5NMlsKee5CtX3v+5LPV8ZRlu/UHYHK3jXacWirvjx+oPOltNYjP+EROn/YRE0bM7PuH/np7h0muauX+0JXpxfKull1qu24UaJNKQUITzo1eWynlFcWfSGAAAIIIIAAAghUj0BuKeT1q+U/1LUUcuyB+Wq97saaLIXsZZGsQGXTnvXaZAUqB7fpy5a8Kj/WDpXhzbp8zGxNHTWDd6h0g8tOES9XHW0rRYDwJLMSvDC2Uq5IxoEAAggggAACCCBQdgG7FPLzy+xyyME/7JKSSXsHSmLs6Ypff7Oi98+r6VLIXhbAClQ27lmnTXvXameBQMV+5Gd4s6adxktps649hSeFdqXkrgclib1cnbQtpQDhCaWKS3k90RcCCCCAAAIIIIBAjQlYj/OE3tqoyKJfKbR5Y2cp5H5WKeRpij70g7oohexlWbsGKlv1ZUvOIz/yKROoTNT002bpstGXa+KIC6jy4wWYtgiUQYDwhPCkDJcdp0QAAQQQQAABBBCoVgG7FPLyZxRe+YICn+aUQj7HKoV8h6L3zq2bUshe1nDP0c+1Yc8abdqzVjsPbcu8QyXdbnfhI1DxQklbBMoiQHhCeFKWC4+TIoAAAggggAACCFS/gF0Kef3aTCnk31ilkKP2pFJDhpwohfxo3ZVC9rKqVqCyce9abdi9Rru6CVTOHz7RfuSHHSpeZGmLQOkFCE8yprzzpPTXFj0igAACCCCAAAII1JlAcPvWzlLI+/bas08HTpRCvvt+xe6oz1LIXi4DO1DZs9b+tTNb5Sdnh8qwphGaMMx65Ge2Lh093X4pbbgh4uUUFdG2we+T9cvvz1RzSqXSSp74VREDZBAI5AkQnnSCUG2H2wMBBBBAAAEEEEAAgRIJ+L/9VuHXXlZk6RI1bv1tZynkkd9R65xrFHvwobouheyFuSNQ2b1GO7/epi+PdX3kxwpUzh860a7yU8mBilX1uikUUGPQr+4KYKfTUlsipVg8oVTaixJtETArQHhixteXTlu3feV9Dnwdq7xBMSIEEEAAAQQQQACB2hbIlkJ+apFCa1ep4dBBe77pUMgOUGJzF6j1upvqvhSyl4ug4x0qu9c6BCqzdOnoy8u+QyUU9KtfONAxReunpS+PxPTpoeNqT6Z17sgBGj04YhV1ylwbkqLxpOJtSS8stEXAmADhiRlawhMzrvSKAAIIIIAAAgggUAMCdinkF5crsvwZBX+fUwp5zFjFb7BKIc+nFHIR65wNVDbuXqtdBXaoDD+xQ2X6mFm6ZPR0u8pPXzzyE2702ztOrM/hWLuWvrdbO/YfUTyR6jLLxoBfE0cN0gOXjtWQpkb7u1hbZhcKHwTKLVDP4Un+YzrdrcWuDU96XibCE89kHIAAAggggAACCCBQjwJWKeTGtzepySqFvGlD11LIl07NlEKeOVvpcPW916MS1nPPsS+0/otV2rRnXSZQsar8pHKq/GQDlbGzdcmoaSUPVKxApH8kE5z8dve3euLtzxV12E3S1NiguZeerkvHDbOPa2lNKN7eNWipBFvGUF8C9RyeOK10NlwhPHGS4nsEEEAAAQQQQAABBEokEPjk40wp5Jef71oK+exz1XrbnZRCLoFzZ6Bi7VDZbixQsV4IO7Bf0H6/ycptB/TSh/s9jf76Safqzimn2cccaWm3XyjLB4FyCRCeFJYvVH3Hyxqx88SLFm0RQAABBBBAAAEEECgg0KUU8pZ35YvmlEKeMVvRBY+q7dKpSgeD+PVSoCNQ2btOOw9t059buu5QGRYZoQnDJ8l+5MflDpWBTUEFGnz64usW/eTV36uYt0L+7XXn65yR/ZVIpnU0mtkxwweBcggQnnRV781uk9yeCE/KcTVzTgQQQAABBBBAAIGaFrBLIT/7lMK/flUN+/bYc7VLITdPUutd9ylqlUIecUpNG/Tl5DoDlbXadWi7viwYqFhVfq7QxaOmdnnkJ9Dg18CmgNqTKf3dyzt18Gi8qKGP6N+of7htkoINfh2Lttsvl+WDQDkECE8y6qUKTbJrSHhSjquZcyKAAAIIIIAAAgjUjYBdCvn1VxR5epEaP8wrhXzl1YrNf5hSyAauhmygsnHvWv2+h0BlzrhrNP30qUq0nq7HN3t7XCd/2D+YMc5+/0lrW9KuwMMHgXIIEJ5kgpNi3mvS03oRnpTjauacCCCAAAIIIIAAAvUpYJVC/uA3alry5MmlkC+0SiHPV+v1N1MK2dDVYQUq6z5/U5v2rSsQqPgV8Y3S4OC5OiU0ScNDEzQ0OF4NCrkezZXnj9QDl4xVIpXW0RYe3XENR8OSCtRzeFLq3Sa5C0N4UtLLlM4QQAABBBBAAAEEEHAvYJVCDr+0Qk3LrFLIO6VkUvL5lLBKIV9/k6IPWKWQm913SEvPAkeSB7Rl/7v6182v6rMjO9WS+lxJZd5ZM8w3W+Mjj2pAaKAGNg5SwJ+pxtPd58zh/fR3N06w35ny7fE2z2PhAARKIUB44qxYzK4UwhNnV1oggAACCCCAAAIIIGBcoLMU8uMKbd4g/5HD9jnT/fopfuk0RRc+mimFHGkyPpZ6OsHQAY32dP966e86ShO3JA/oz607lE72Uzo5XMfiR3W07Yhmjr1KPrsmT+FP0O/X/503xf7ym2OEJ/V0HVXSXOs5PDG5DoQnJnXpGwEEEEAAAQQQQACBIgWsUsiRFc8qYpVC/uRj2dsZ/H4lzj5XsVtuV/T+eUqOGVtk7xyWFRjcv1F+n+wqO59/1dIrmNGDI/rJrRPZedIrRQ7urQDhSW8FCx9PeGLGlV4RQAABBBBAAAEEECiZQEcp5MW/Uui9dzpLIQ8eovjlsxR96AeUQi5SO1umeNE7X2jjnw4V2UvmsKlnDdMjl49TMpXWEd550itLDi5egPCkeLuejiQ8MeNKrwgggAACCCCAAAIIGBOwSyE/97TCr72ihn17rYd77FLIiQkTFbNKId95D6WQXeo3hRsUDjZo3R8P6qn3drs8qnCz+y4eqzkTRirenlJLa6JXfXEwAsUKEJ4UK9fzcYQnZlzpFQEEEEAAAQQQQACBPhGwSyG/8aoiT1mlkD+Q9e4U65M8ZaRarVLICx6hFHIPKxEM+DUgElBLPKG/fWGHjseLCz36hQL6xzsmq19jg47FEmpPpPpk/TkJAvkChCdmrgnCEzOu9IoAAggggAACCCCAQN8LpFJqfP89O0gJr12lhoN/sceQDoXUduEUxe6fp9Ybb6UUct7KZB/d2fLFN/q3DZ8WtW4/mDFOl44bpmRKOtLCy2KLQuSgkggQnpSE8aROCE/MuNIrAggggAACCCCAAAJlF8iUQn5eTctPlEJOJDpLIV93o6JzF1AKWVKD36dB/YL2ev3rmo+1fV+m0pHbz+TTBulvrjrXbn402q5EMu32UNohUHIBwpOSk9odEp6YcaVXBBBAAAEEEEAAAQQqSqCjFPKSJxTauL5rKeRLLlN0waOKz76ybkshNwb96h8OKJ5IafkHe+13oLj5zDx3hO65eKzCAb+OtybU1s7jOm7caGNOgPDEjC3hiRlXekUAAQQQQAABBBBAoKIF7FLILyxT5MXlCnz6iZRKZUohn3VOphTyA/PrrhRyuLFBTaEGe912HjiiX23+XEdi7QXXcWAkoIemjZO168T6xOJJxdqSFb3mDK4+BAhPzKwz4YkZV3pFAAEEEEAAAQQQQKBqBOxSyBvWKbLIKoX8dk4p5MEnSiE/VjelkENBv/qFA/bapdLS18fj+vPRVh082irraZxRg8MaOSCsYf1D8vusOkdSNJ5UnOCkaq73Wh8o4YmZFSY8MeNKrwgggAACCCCAAAIIVK1AcMe2E6WQV6phb34p5HsVvfPemi6F7Pf5FAk1yHqUx9fNKlqhifWITiyesEMWPghUigDhiZmVIDwx40qvCCCAAAIIIIAAAgjUhIBdCvnN1zKlkH/3/smlkOc/nCmF7PfXxHzzJ2G9TNb65be2mVi7UVJpJU/8qskJM6mqFyA8MbOEhCdmXOkVAQQQQAABBBBAAIHaE8iWQn56scJr3uwshdwYUvuF31PUKoV8022UQq69lWdGVSRAeGJmsTyFJ82zFnQZxa4NT/Y4qp7a53+X7Sjb54GvY2ZmTK8IIIAAAggggAACCCBQEgG7FPLKF9S0bKmCu3ZK2VLIp41R/NobFZ23kFLIJZGmEwTcCxCeuLfy0tJ1eGKFHflhSaHfy57cqX1Px1p9EJ54WUbaIoAAAggggAACCCBQXoFMKeTNarJLIa/rLIXc1E9xqxTywvouhVze1eHs9SRAeGJmtQlPzLjSKwIIIIAAAggggAACdS0Q+PRjRZ63SiGvkPW/O0shn63YzVYp5HlKjj2jro2YPAImBAhPTKhKZQ1P8qeUu7OFnSdmFpxeEUAAAQQQQAABBBDoawFftEXh9WsVWfy4Qu9apZBb7CGkBg9WfPpMRR96TG2XTVM6GOzroXE+BGpOgPDEzJKWLTwpNJ3cR3kIT8wsOL0igAACCCCAAAIIIFBugUwp5KUK/XqlAnv3SOm0FAjY70eJ3XmvonffV9OlkMvtz/lrW6BWwhOv71w1vap2eNLdy1utk2d3gzi9wyR/oF7bW8cTnphebvpHAAEEEEAAAQQQQKCyBOxSyKtfV2TJE2r83QfyxeP2AJOnjFR89lX2u1JquRRyZa0Go6kFgVoIT4rJE0yvHTtPTAvTPwIIIIAAAggggAACCLgTsEohf/AbRaxSyKvf6FoK+bsXZkoh33ir/bgPHwQQKCxAeGLmyihpeJKbDjklRU7f89iOmQWnVwQQQAABBBBAAAEEqkWg4S9/VvjlF9T03NMK7trRWQp59BjFr7tB0QcXqn3CxGqZDuNEoE8ECE/MMLsOT6zTOz1zlB+IuGmfOy1eGGtmkekVAQQQQAABBBBAAIFqF+gohfzUk5lSyIe/taeUzpZCnveQ4lddrXSkqdqnyvgR6JUA4Umv+Lo92FN4YmYIhXtl50lfanMuBBBAAAEEEEAAAQSqS8AuhfzCcoVfXKHgJ3/qLIU8ziqFfJuic+dTCrm6lpTRlkiA8KREkHndEJ6YcaVXBBBAAAEEEEAAAQQQ6COBjlLIS55Q6N235Gs5UQp5kFUKeYaiD/8VpZD7aC04TfkFCE/MrAHhiRlXekUAAQQQQAABBBBAAIEyCdilkJc9o9BrL59cCvmOexS9535KIZdpbTiteQHCEzPGhCdmXOkVAQQQQAABBBBAAAEEKkDALoW85g1FFlulkN/vLIU84hTFr5hDKeQKWCOGUFqBWghPLBGnd6iWVs25N8ITZyNaIIAAAggggAACCCCAQC0IZEshL7VKIb8pq5qP9Uk3Nqr9u99T9N65ar35dkoh18Ja1/EcaiU8qbQlJDyptBVhPAgggAACCCCAAAIIINAnAnYp5JUvKPLcUjXu3J5TCvk0xa+5XtH5D1MKuU9WgpOUUoDwpJSanX0RnphxpVcEEEAAAQQQQAABBBCoIoFsKeTI04sU3rA2pxRyk+IXXarogocVv+oaSiFX0ZrW61AJT8ysPOGJGVd6RQABBBBAAAEEEEAAgSoWsEshv7hC4ReXK/hxTinkM89S6823quXBhZRCruL1reWhE56YWV3CEzOu9IoAAggggAACCCCAAAI1ImCVQg5tWKemJY8r9E5uKeRBik+boegjP6QUco2sdS1Mg/DEzCoSnphxpVcEEEAAAQQQQAABBBCoUYHgzu1qWv6MQq9YpZB3S+m0FAio/bwJit1plUJ+gFLINbr21TAtwhMzq0R4YsaVXhFAAAEEEEAAAQQQQKAOBDKlkN9UZMkTavztlo5SyKkRp6h19lWZUshTLpL8/jrQYIqVIEB4YmYVCE/MuNIrAggggAACCCCAAAII1JtAthTyM08pvOr1rqWQL7hQsfvmKnbzHZRCrrfroo/nS3hiBpzwxIwrvSKAAAIIIIAAAggggECdC9ilkF95SZFnn+pSCjk5arRar72BUsh1fn2Ymj7hiRlZwhMzrvSKAAIIIIAAAggggAACCHQI+Nrb1fj2ZkWeflLh9SeXQo7Ne0itV19LKeQC18ycO35o/+7q539e8Iqyvu/uu3q8BAlPzKw64YkZV3pFAAEEEEAAAQQQQAABBLoVCHz2iSIvPa/w88sU/PgjKZWy34uSOHOcWm+6TS3zKIVs4bkJRty0qadLkfDEzGoTnphxpVcEEEAAAQQQQAABBBBAwJVAZynkJ06UQj5uH5caOEjx6TMUffiv1DZ1utLBoKv+aqmRm2DETZtaMnGaC+GJk1Bx3xOeFOfGUQgggAACCCCAAAIIIICAEYFMKeRnFXr1ZQX2fJEphdzQoPbzmxW7/S5F73uwLkohZx/XySJnH83J/33r+9zvrP+d28brIz29OdbIBeGxU8ITj2AumxOeuISiGQIIIIAAAggggAACCCDQ1wJ2KeS1qxRZ8rgaP8gphTx8hFpnX6noQ4/VdCnk/F0lhXaZ5P5eofejeNmZ4uZ8fX0NeD0f4YlXMXftCU/cOdEKAQQQQAABBBBAAAEEECivgFUK+bdbFMmWQv7zl/Z40o2Nap/8XcXunavYrXfWVClkN2FGfniSv9OkN+FJeRe8uLMTnhTn5nQU4YmTEN8jgAACCCCAAAIIIIAAAhUoYJdCfvVluxRycMc2+RIJyeeTXQr5muszpZCbJ1XgyN0PifDEvVW2JeGJdzM3RxCeuFGiDQIIIIAAAggggAACCCBQwQIdpZCXLsqUQv72G3u06UiT4hddoti8hXagYv3/avoQnnhfLcIT72ZujiA8caNEGwQQQAABBBBAAAEEEECgigQ6SiG/sFzBP/2xaynkG29Vy/yHlBx7RsXPyCk8yX/HidM7UZwm7HQ+p+Mr4XvCEzOrQHhixpVeEUAAAQQQQAABBBBAAIGKEOgohfzUkwq9vVm+lpxSyFOnK/roD9U29fKKLIXcXRiShc1W1nFTicftYlBtx61UZ7vFixfb/2fevHmeD16yZInS6XRRx3o+WS8OIDzpBR6HIoAAAggggAACCCCAAALVJmCVQo48v0zhlS92LYV83vmK3X63/eLZ5MjvVNu07PF6eTlsVU7QxaDZeeICqYgmhCdFoHEIAggggAACCCCAAAIIIFALAv7DhxVau0pNi7OlkFvtaaWqtBRyT+FJ7o6SQmuXX6WnWteX8MTMyhGemHGlVwQQQAABBBBAAAEEEECgugSypZCffVrhN3+thpNKIT+g2K139W0p5ERCvnhc6X79qsuyjKMlPDGDT3hixpVeEUAAAQQQQAABBBBAAIGqFrBLIb+2MlMKefvWrqWQr75O0QWP9Ekp5P7/8k9qefgxpQcNrmrPvho84YkZacITM670igACCCCAAAIIIIAAAgjUjEBnKeTFCq9fk1MKOaK271+iaLYUclPpd4g07NmtYfffoa9e/LVSI06pGVNTEyE8MSNLeGLGlV4RQAABBBBAAAEEEEAAgZoVaNjzhSIvLFdkxXNdSyGfcaZab7xFLQseKWkp5EE/+huF17ypr156Q8mxpxd09UkKBvwKNPjk8/nk9/vsKi7JVFrJZFrtyZTS6Zpdko6JEZ6YWWPCEzOu9IoAAggggAACCCCAAAII1IWAXQp543o12aWQN8l3PFsKeaDiUy9X9OHH1DZ9Zq9KIfsPHdTI7zcr3dRPX618U4lzxnfY+nxSJBRQOOjv2dvnU7wtqVg8oVQNhyiEJ2ZuO8ITM670igACCCCAAAIIIIAAAgjUpUBw1w57R0r4lRcV2P2F7O0eDQ1qH2+VQr5LsfseLKoU8oB//u+yflnvPrEe4Wmf/F01+H0a0BSQ30pQJB2NJfTZV8f12aHj2vNNVKOHNGnc8H46a0Q/DW5qtNtYwzkWSyiRTNXk+hCemFlWwhMzrvSKAAIIIIAAAggggAACCNS9QEcp5CWPq/H9LfLFs6WQh6t11pWZXSlTLpb8DrtGJPlaWuzdJ9YuFKv6zuFnnlfkmqts49b2pJZ9sFcbPjrUrfnFZw7Vg5edrn6NAbuNFaC0J2ovQCE8MXPbEZ6YcaVXBBBAAAEEEEAAAQQQQACBXIETpZDDzy1V5A2rFPIB+9t0sFHtky9Q7J4HFLv97h5LIfd74hca9J//Q6bXYFBty1boT9+fqV9s/kyHjsUdvQdFgnp0xjhNOHWgvQPlaKzdfh9KLX0IT8ysJuGJGVd6RQABBBBAAAEEEEAAAQQQ6EHALoX8+quKLF2i4PYPO0shnzpKrVYp5IWPnlwKOZnUyIsmyqrAY3/8fv3s4b/XW9/P7EBx+/nRteN13ncG2u8+OXy8ze1hVdGO8MTMMhGemHGlVwQQQAABBBBAAAEEEEAAAZcCdinkd95SZOlihdet7loKecrFmVLI195gvzB2wK9f1oB593X0nPb5tOie/6hVs+90eTZpWL9G/cNtkxQK+BWNJ9XalnR9bKU3JDwxs0KEJ2Zc6RUBBBBAAAEEEEAAAQQQQKBIAbsU8osrFFnxrIIf/VFKpSSfT4kzxim9YIECy56Vb9euLr2/cMNCrbj5B67POOPc4Vow9Uyl0mkdPt7u+rhKb0h4YmaFCE/MuNIrAggggAACCCCAAAIIIIBACQSypZAjTy1S2C6FfKzbXtdNv0W/nPtf7KDFzeff5k5RY8CvIy3tStZI/WLCEzcr770N4Yl3M45AAAEEEEAAAQQQQAABBBAog0BQKQ356f9Q4F9+KrUVflfJOxfN0c8W/jelGjJVdXr6/NcbJthljFtaE4q310blHcITp1Uv7nvCk+LcOAoBBBBAAAEEEEAAAQQQQKCvBNJp+zGeQf/0E/k//cTxrDtOb9ZP//p/qn3gkB7bzr/sDM0cP0LReEKtbYQnjrDdNFi8eLH9zbx58zx3sWTJEqXT6aKO9XyyXhxAeNILPA5FAAEEEEAAAQQQQAABBBAwK2BV5Bn4jz9RYNeOHk/UFgxp7+hx2jvydB3oP1xbmqfqYPOFPR5z24WjddMFoxRrSyoWr42XxrLzxMz1SHhixpVeEUAAAQQQQAABBBBAAAEEeiEQ/GCLBv34R2r8YEvXXvx+tZ0xTlsHj9Ge0Wdrz+iztHf0WfrLiNGu33WS7fDfX3mOvjtmcE1V3CE86cVF18OhhCdmXOkVAQQQQAABBBBAAAEEEECgCIHAR3/QwL//scKrXldqxClqnzBR7ROalTi/Wcnmiep30YVKBBv12JIPlE4XcYKcQ/7X3RdoSFOjjkbblUj2srPeDaVkRxOelIyyS0eEJ2Zc6RUBBBBAAAEEEEAAAQQQQMCLQDKp0FsbFdy1U+0TJ6lt0gVKDxl6Ug9D+jfaxXR+/NJOHTgc83KGLm0jjQ36P/d/T1Zk8u2xwi+fLbrzMh5IeGIGn/DEjCu9IoAAAggggAACCCCAAAIIGBCIhBpkBR8ffPGNfrbh06LPcP/FY3XVhJF2lR2r2k6tfAhPzKwk4YkZV3pFAAEEEEAAAQQQQAABBBAwIGDtOhls7T6RtOS93Vr/x4OezzJl7BD9uyvOto87fLxNqdp4YseeD+GJ58vB1QGEJ66YaIQAAggggAACCCCAAAIIIFApAuHGBjWFGpRIpfS/132i7fuOuB7a2af013+6erxCAX9NVdnJAhCeuL4UPDUkPPHERWMEEEAAAQQQQAABBBBAAIFKEOgfCagx4LeHsuGjQ3r2/T1qS6S6HVrA79Nt3xuta5pPlf//vzPFekGs9aLYWvsQnphZUcITM670igACCCCAAAIIIIAAAgggYFigfzigxmAmQDl0LK5Vv/+LPj14XHu+abEfxbEe8Rk7tElnjeivK847RaMGR+y27YmUjsVq5z0nucyEJ2YuOsITM670igACCCCAAAIIIIAAAggg0AcC1stjrZfI5n7akynt+zam0YMjHbtTst/H2pKKxZN9MLLynILwxIw74YkZV3pFAAEEEEAAAQQQQAABBBDoIwFrh4kVogQa/Ao0WK+S7fpJptJqT6bV2pZUqpbeDlvAl/DEzEVHeGLGlV4RQAABBBBAAAEEEEAAAQTKIGBFJ1aY4vf77Ed3aj0syScmPDFz0RGemHGlVwQQQAABBBBAAAEEEEAAAQT6XIDwxAw54YkZV3pFAAEEEEAAAQQQQAABBBBAoM8F6jE8aZ61QLs2PGnUmvDEKC+dI4AAAggggAACCCCAAAIIINB3AvUUnlihSfZTVeFJ7sCtCbgdfKGU6MDXsb67ujhTQYE5d/xQq5//OToFBEzb5PZv+lwsMAIIIIAAAggggAACCNSOQD2FJ9lVq6qdJ4UG6zSBnlKi3PCkux8e+aHS7A1uytdUv2Y1uvbuZQ5e2haaQ2+P70sXzoUAAggggAACCCCAAALlFSA8MeNfssd2iglPekqJCE/MLLiXXk390G6qXy9z621bL3Pw0pbwpLcrw/EIIIAAAggggAACCNS3QLnCk+3bt+uCCy7wjL9t2zZNnjxZ8+bN83xsT5lC0Z11c2BNhSfWD6m5n9xHTvJ/gC30/52Ozfbf3aMs5Tx/dj65Y8gfZ0/js+ae/731e/mG3RkVOr6QU0/ncBpf/jXs5N3bseYeX6xNsfOrwnAnAAAGCElEQVTt6bEdr06l/kOD/hBAAAEEEEAAAQQQQKByBcoRnlgBiPWr2I8VuuQGL/mvBMntt9DrQZyeeil2XLnH1Ux4Uuhf951+AM3+cO/m2PwgodAP8oXCiu7O4fROi/zv3Zy/UNjhZY5exp8NS3rqv7sL1Mk7e1xPOza8fufFu7drW6xNd2N0Gnsp/iCgDwQQQAABBBBAAAEEEKgNgXKEJ+WWq5jwxE3qY/qxne4Ww204kPsDrdMulGJ++HUTCOTuDulpV4yJ8zuNz8T3hCeZl+32FPTkGhGelPuPXM6PAAIIIIAAAggggED1CxCemFnDutl54hSeFOL1sqvCKXwo9/mdxufm+56MsvPLtumpSo/TubJ9OIUOuY+v9PR4Uf6YCj1KY7Xp6XEsp105xVw/To/09LRryY2zmT8y6BUBBBBAAAEEEEAAAQQqWaCewpNCGz3cVv31uoZ9Gp50t5XGqVRxdz9EOz3O0N0OEzc7T3IhnX6Izw1GejrOy86TUp/fKbAo5vueLrbePFbjNjzpzshpvZy+z59Xb22cji80X6druxgjr3840B4BBBBAAAEEEEAAAQSqT6CewpO+XJ2ShSfWoPNTn/zEJz8k6Skl8lptp5gfUHv6AdTtD69u++hNOzc/7DvN3+v32V0RXh6Lchv4OI2lmGDAab28fO8Unni1KWa+TuMtxqgv/2DhXAgggAACCCCAAAIIIFAeAcITM+4lDU9KOUSv4Yl17vzHILqr9uKmCozTO0kKzbWc53fzA7rT+HK/t+ZfaIdO7ry9VOIpFEhkfy83oOmu/56Ot77rbWWhnh4zyr+2vNoUOr7Q9Zo7j+7CE6c1LOU9SF8IIIAAAggggAACCCBQfQKEJ2bWrCrCEzNTp1cEEEAAAQQQQAABBBBAAAEEakuA8MTMehKemHGlVwQQQAABBBBAAAEEEEAAAQT6XIDwxAw54YkZV3pFAAEEEEAAAQQQQAABBBBAoM8FCE/MkFdseGJmuvSKAAIIIIAAAggggAACCCCAAAIIeBMgPPHmRWsEEEAAAQQQQAABBBBAAAEEEKgzAcKTOltwposAAggggAACCCCAAAIIIIAAAt4ECE+8edEaAQQQQAABBBBAAAEEEEAAAQTqTKDmwpPmWQu6LOGuDU+6WlLrOLdtXXVIIwSqWMDrfdRT+/zvsizcb1V8gTD0kgl4vddKdmI6QqAKBbzeL/zdVIWLzJDLLuD1PssOmJ+lyr50DKAPBGoqPCl00zrdyLl/QPDDXB9ccZyi4gW83kdO7Z3uwYoHYYAIGBJwuncMnZZuEahKAa/3i1N7/m6qysuAQRsWcLpvCp2en6UMLwrdV5RA3YcnpKUVdT0ymAoQ8PoXp1N7/gO1AhaVIVSkgNO9U5GDZlAIlEnA6/3i1J6/m8q0kJy2ogWc7pueBs89VdFLy+BKJEB4cgKSG75EVxTdVL2A1784ndoXemyHXV5Vf5kwgRIION07JTgFXSBQMwJe7xen9vzdVDOXBhMpoYDTfUN4UkJsuqpKAcITwpOqvHAZtDkBr39xem1vjZyw0tz60XP1CBRz71TP7BgpAqUV8Hq/eG3P302lXS96q06BYu6b7Ez5b7vqXHNG7U2gasKTQv9CkJ1q9l+xueG9LT6t60/AxH1UzH3HX7D1d+0x45MFirl3cESgXgW83i9e2xOe1OuVxbxzBYq5bwhPuIbqSaBqwhM3i8IN70aJNgj0LOD1PvLanv9A5QpEICNQzL2DHQL1KuD1fvHanr+b6vXKYt6EJ1wDCLgXqLvwpLt/8eZfwt1fNLSsbQE3/8GZ28apvdP3ta3J7BDoXoB7g6sDAfcCbu4X/m5y70lLBAoJeL3PnIIXlBGoNYGaCk+y/2qQu0j5L6bM/0Oh0GMMvMyy1i5z5uNVIP++8HofFWrf033pdXy0R6BWBJzutVqZJ/NAoBQCTveL03/j8XdTKVaBPmpdoLf3meXDz1K1fpXU7/xqLjyp36Vk5ggggAACCCCAAAIIIIAAAgggYEKA8MSEKn0igAACCCCAAAIIIIAAAggggEDNCPw/Vc8yEFu1GmkAAAAASUVORK5CYII=", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "analyzer.plot_metabolic_network(gene_names=['pfkB'])" ] }, { "cell_type": "code", "execution_count": 26, "id": "603fe97b-a07f-43ed-a7ae-01830fd43694", "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "hoverinfo": "none", "line": { "color": "red", "width": 1 }, "mode": "lines", "type": "scatter", "x": [ 0.0008400125792878667, -0.09915998742071214, null, 0.0008400125792878667, -0.09915998742071214, null, 0.0008400125792878667, 0.10084001257928787, null, -0.015426782266210231, -0.11542678226621024, null ], "y": [ -0.016929659784651958, -0.11692965978465196, null, -0.016929659784651958, 0.08307034021534805, null, -0.016929659784651958, -0.11692965978465196, null, -0.11919616437735323, -0.21919616437735323, null ] }, { "hoverinfo": "none", "line": { "color": "green", "width": 1 }, "mode": "lines", "type": "scatter", "x": [ -0.023689801013304937, 0.0008400125792878667, null, -0.11542678226621024, 0.0008400125792878667, null, 0.06516227012312284, 0.0008400125792878667, null, -0.09251117574571945, -0.015426782266210231, null ], "y": [ 0.051730551856693216, -0.016929659784651958, null, -0.21919616437735323, -0.016929659784651958, null, 0.020329329452145332, -0.016929659784651958, null, -0.06863143934792013, -0.11919616437735323, null ] }, { "hoverinfo": "text", "hovertext": [ "CYTBD
2.0 h_c + 0.5 o2_c + q8h2_c --> h2o_c + 2.0 h_e + q8_c", "h2o_c
H2O H2O
H2O", "h_c
H+
H", "h_e
H+
H", "o2_c
O2 O2
O2", "q8_c
Ubiquinone-8
C49H74O4", "q8h2_c
Ubiquinol-8
C49H76O4", "O2t
o2_e <=> o2_c", "o2_e
O2 O2
O2" ], "marker": { "color": [ "#00008B", "#1f77b4", "#1f77b4", "#1f77b4", "#1f77b4", "#1f77b4", "#1f77b4", "#00008B", "#1f77b4" ], "colorbar": { "thickness": 15, "title": { "side": "right", "text": "Node Connections" }, "xanchor": "left" }, "line": { "width": 2 }, "size": [ 30, 20, 20, 20, 20, 20, 20, 30, 20 ] }, "mode": "markers+text", "text": [ "CYTBD", "h2o_c", "h_c", "h_e", "o2_c", "q8_c", "q8h2_c", "O2t", "o2_e" ], "textposition": "top center", "type": "scatter", "x": [ 0.0008400125792878667, -0.09915998742071214, -0.023689801013304937, -0.09915998742071214, -0.11542678226621024, 0.10084001257928787, 0.06516227012312284, -0.015426782266210231, -0.09251117574571945 ], "y": [ -0.016929659784651958, -0.11692965978465196, 0.051730551856693216, 0.08307034021534805, -0.21919616437735323, -0.11692965978465196, 0.020329329452145332, -0.11919616437735323, -0.06863143934792013 ] } ], "layout": { "annotations": [ { "showarrow": false, "text": "Hover over nodes to see details", "x": 0.005, "xref": "paper", "y": -0.002, "yref": "paper" }, { "arrowcolor": "red", "arrowhead": 3, "arrowsize": 2, "arrowwidth": 1.5, "ax": 0.0008400125792878667, "axref": "x", "ay": -0.016929659784651958, "ayref": "y", "showarrow": true, "x": -0.09915998742071214, "xref": "x", "y": -0.11692965978465196, "yref": "y" }, { "arrowcolor": "red", "arrowhead": 3, "arrowsize": 2, "arrowwidth": 1.5, "ax": 0.0008400125792878667, "axref": "x", "ay": -0.016929659784651958, "ayref": "y", "showarrow": true, "x": -0.09915998742071214, "xref": "x", "y": 0.08307034021534805, "yref": "y" }, { "arrowcolor": "red", "arrowhead": 3, "arrowsize": 2, "arrowwidth": 1.5, "ax": 0.0008400125792878667, "axref": "x", "ay": -0.016929659784651958, "ayref": "y", "showarrow": true, "x": 0.10084001257928787, "xref": "x", "y": -0.11692965978465196, "yref": "y" }, { "arrowcolor": "green", "arrowhead": 3, "arrowsize": 2, "arrowwidth": 1.5, "ax": -0.023689801013304937, "axref": "x", "ay": 0.051730551856693216, "ayref": "y", "showarrow": true, "x": 0.0008400125792878667, "xref": "x", "y": -0.016929659784651958, "yref": "y" }, { "arrowcolor": "green", "arrowhead": 3, "arrowsize": 2, "arrowwidth": 1.5, "ax": -0.11542678226621024, "axref": "x", "ay": -0.21919616437735323, "ayref": "y", "showarrow": true, "x": 0.0008400125792878667, "xref": "x", "y": -0.016929659784651958, "yref": "y" }, { "arrowcolor": "green", "arrowhead": 3, "arrowsize": 2, "arrowwidth": 1.5, "ax": 0.06516227012312284, "axref": "x", "ay": 0.020329329452145332, "ayref": "y", "showarrow": true, "x": 0.0008400125792878667, "xref": "x", "y": -0.016929659784651958, "yref": "y" }, { "arrowcolor": "red", "arrowhead": 3, "arrowsize": 2, "arrowwidth": 1.5, "ax": -0.015426782266210231, "axref": "x", "ay": -0.11919616437735323, "ayref": "y", "showarrow": true, "x": -0.11542678226621024, "xref": "x", "y": -0.21919616437735323, "yref": "y" }, { "arrowcolor": "green", "arrowhead": 3, "arrowsize": 2, "arrowwidth": 1.5, "ax": -0.09251117574571945, "axref": "x", "ay": -0.06863143934792013, "ayref": "y", "showarrow": true, "x": -0.015426782266210231, "xref": "x", "y": -0.11919616437735323, "yref": "y" } ], "autosize": true, "hovermode": "closest", "margin": { "b": 0, "l": 0, "r": 0, "t": 40 }, "showlegend": false, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "font": { "size": 16 }, "text": "
Metabolic Network - Reaction and Metabolites" }, "xaxis": { "autorange": true, "range": [ -0.13095019605344987, 0.11636342636652752 ], "showgrid": false, "type": "linear", "zeroline": false }, "yaxis": { "autorange": true, "range": [ -0.25281498402644126, 0.11668915986443607 ], "showgrid": false, "type": "linear", "zeroline": false } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAABE8AAAFoCAYAAACmM9U+AAAAAXNSR0IArs4c6QAAIABJREFUeF7s3Qd4HGedP/Dvttld9eZuy0W2bMu9x3Fc4xLbKXAh4Q5CjnIcBPhzcAkHXBJKDo7QIbRLCBBCh4Mjxb2XuNuyLMlFtlwkd0mWrLo72/7PO6uVV/KW2TLSavc7z5Mjtmbeed/PO+vLfv3O79V5PB4PeFCAAhSgAAUoQAEKUIACFKAABShAAQoEFNAxPOGTQQEKUIACFKAABShAAQpQgAIUoAAFggswPOHTQQEKUIACFKAABShAAQpQgAIUoAAFQggwPOHjQQEKUIACFKAABShAAQpQgAIUoAAFGJ7wGaAABShAAQpQgAIUoAAFKEABClCAAtEJcOVJdG68igIUoAAFKEABClCAAhSgAAUoQIEUEWB4kiITzWFSgAIUoAAFKEABClCAAhSgAAUoEJ0Aw5Po3HgVBShAAQpQgAIUoAAFKEABClCAAikiwPAkRSaaw6QABShAAQpQgAIUoAAFKEABClAgOgGGJ9G58SoKUIACFKAABShAAQpQgAIUoAAFUkSA4UmKTDSHSQEKUIACFKAABShAAQpQgAIUoEB0AgxPonPjVRSgAAUoQAEKUIACFKAABShAAQqkiADDkxSZaA6TAhSgAAUoQAEKUIACFKAABShAgegEGJ5E58arKEABClCAAhSgAAUoQAEKUIACFEgRAYYnKTLRHCYFKEABClCAAhSgAAUoQAEKUIAC0QkwPInOjVdRgAIUoAAFKEABClCAAhSgAAUokCICDE9SZKI5TApQgAIUoAAFKEABClCAAhSgAAWiE2B4Ep0br6IABShAAQpQgAIUoAAFKEABClAgRQQYnqTIRHOYFKAABShAAQpQgAIUoAAFKEABCkQnwPAkOjdeRQEKUIACFKAABShAAQpQgAIUoECKCDA8SZGJ5jApQAEKUIACFKAABShAAQpQgAIUiE6A4Ul0bryKAhSgAAUoQAEKUIACFKAABShAgRQRYHiSIhPNYVKAAhSgAAUoQAEKUIACFKAABSgQnQDDk+jceBUFKEABClCAAhSgAAUoQAEKUIACKSLA8CRFJprDpAAFKEABClCAAhSgAAUoQAEKUCA6AYYn0bnxKgpQgAIUoAAFKEABClCAAhSgAAVSRIDhSYpMNIdJAQpQgAIUoAAFKEABClCAAhSgQHQCDE+ic+NVFKAABShAAQpQgAIUoAAFKEABCqSIAMOTPp7oSUs+iMqdr8W1F1q0GdcO9oPGaNgPJqkXu5gMz4MWY9CizV6cVt6KAhSgAAUoQAEKUIACqgWSPjwR/3EvjlABhZpzgonG+uUh1usD9StQm/G6j5p21Jyjtt+qn+Q4nxjtGKLthu8Z7Hl9vIO1WPoXrC+9bRXtGGK5Ts0Y1fw5ouacZPyzRo1fLPPDaylAAQpQgAIUoAAFKKC1AMMTAKn6hSaah0uNVbRflKK9LppxhLumt/sS7H693Y9ovrgnSh/DzWksP1czRrWfjXBhbjRzoGZsasagph3/c9QGtVrcO9K+8nwKUIACFKAABShAAQrEIpAS4Yn4G/NwX06j/Y/7aK/zTVqs1weafC3a7NnfUPeI9v7RXhfLB0CrL6qR9kkLz0j7EOr8RJqbeI5LbVtqxu87h3/W3K2qxk/tXPA8ClCAAhSgAAUoQAEK9IUAw5POmiPB/gbVf1J6vrbg+5vmWM7x/8IVqh3/8CLceWr/Nli003MM4V4T8W873JdE/36Gu08oS7XjiXYOfeGar79qwrZ4f1ijCU/CmQZ7ZsTvB5rnYO2Fe85DPQfhPhs97YP1LVyw0/Pn/uOLx2dMzZf/WMKTcHMZbg4CfZZ7WsbDoaezms9mNH1X83xG86zE+3PL9ihAAQpQgAIUoAAFUkcgZcIT35eLQF+qwv3M/0tooAAl0loQPQOIQF8C1HwpCdRvLX6vZwjiG6/a8CSWscQyHjX39X2xUzOvar5AR/tHR6ThiZqxBbOL5nnXon+R2AdzVfMMRnKfUAFcLMFiz898sD+HUunPmkjGqmaeo/3s8ToKUIACFKAABShAAQqoEWB40rnTTagvN8HCg1BfTkPhR3OvSL68qvliHW0Q0PO6cPeKtd+BvmAF+ht+Nf0K1VbP+YqkPTUftHDnRPLlMBJTNaGDmmchknuqPVfteeHsAv1c689YpPcM1p9IDNTMU6jnWO291J4XS7AZKjiJ5HMazbPBayhAAQpQgAIUoAAFKBCNQEqFJ/7/sR/qy3GsXx56hi2BJibc6o2eX0xi7VO8woBwYUm8+50I4UmkX1rF+T0PNasWQj0nPZ+pSFY7BeqPaE/NMxjpl9xgX6gj/UIciXks44smZAn2B22wz1iq/1kT6plQ++daJM9DNP+PkNdQgAIUoAAFKEABClAgnADDk06hnl+iQsGFW3If7gtnNF/Y1H7JCPZFRcvwJFRgEuyLrc8oGkvfWEI5qvUKdl6ge4T7MMXyczWhlP9zFevzqfYZDPcsB3reYrUPF8CoCZLUji+a8+IdnsQ6l2rDCS3mRe1zG+pzFsn4e54bLpSM5TPJaylAAQpQgAIUoAAFKOAvkHLhiZpwIZK/5Qz35TvQ4xbNFza1X3zUjC+SL6c9+6+mH2rHF2vb/uOIJBxS0z9f6BOqeGw8/yiJ5DlS+3yqmSu1z4LatsK1p8Y+XBuRBjpq+672PLXhiZrPotq5VBuQhPpMqR2f2vPUjC/cXEUy/nB/lsbz88i2KEABClCAAhSgAAUo0FOA4UmniNovdWq/8Kv9AhLv89R+oYn2S4ua/sbbUk1IokV4onZVTDz+WFHjGu6LqNpns+czouZZiFf/1D4b8eyT2r6rPY/hyWtdBIHM1P6e2pAs1OdLzXMSj88n26AABShAAQpQgAIUoEBKhieBpl3tl2+154UKMcTP/OtN+P861BdktV9K4n2ev1e4Lyvi5z3HE+yaSCxDfdFS236gNmK5Np5/fKhxVRPmqDFVO0exBB1qnsFYw4pIPmNqa8QE63egz2gkYVWoz5DaZzBSr57zHGjeQxlGuwOVmrlX82eKmucv3Ocmnp9RtkUBClCAAhSgAAUokNoCCRueXG3oiMvMrHj0KWz568/CthXoPPF7PY9Abfmf1/PnPdsQP/e/l+/fA50XqNNqzgs2lnB9F/cLZ6XGU0vLYGMI1u9wXsHGE+nvh33AwpwQjWs0z6dvjtXMUahn2f9noaz8hx2ovVDzFu5Z9LWt9jMW7PMU6Wc22FSqmUNxrRr7YJ/FZPmzJpx5oPGrfd5j/SzyegpQgAIUoAAFKNDfBYbmW/v7EBKy/0kfniSkeop1Su2XyhRj4XApQAEKUIACFKAABShAAQrEXYDhSdxJlQYZnmjjylb9BBie8HGgAAUoQAEKUIACFKAABSjQOwIMT7RxZniijStbZXjCZ4ACFKAABShAAQpQgAIUoECvCzA80Yac4Yk2rmw1QHgSql5DOLBwtUvCXc+fU4ACFKAABShAAQpQgAIUSAUBhifazDLDE21c2WqP8ET8Uk2R0UBwkRTAJTwFKEABClCAAhSgAAUoQIFUFkjG8CQRdllkeJLKn6peGnus4Ues1/fSMHkbClCAAhSgAAUoQAEKUIACfS6QbOGJCE7EUbnztT61ZXjSp/ypcfNYw49AW5QKObVb2aaGMkdJAQpQgAIUoAAFKEABClAASKbwxLfihCtPQjzZVxs6+NwniUA8whMGJUnyMHAYFKAABShAAQpQgAIUoICmAskSnvgHJkkXnviW0/ieBLXLagJBMDzR9PPUq41rEZ5w++NenULejAIUoAAFKEABClCAAhToJwJ9EZ6UlZVB/BPtMW3aNIh/fEfPjCCpwpNAgwk3QP+wpWfQwvAk2scu8a6LNTwRI+JuO4k3r+wRBShAAQpQgAIUoAAFKJB4An0Rnrz++utKeOIfgKiVOXHiBKZOnYonn3yyW3gS7Hq1izTU3l/teXGreRJNeBIsVRK/z/BE7RTyPApQgAIUoAAFKEABClCAAhSggFegr8ITcW//AETtfPzmN7+Bx+MJeW24hRlq7xXLeQxPYtHjtTELBCsG62uYtU5iJmYDFKAABShAAQpQgAIUoEAKCTA80WayGZ5o48pWKUABClCAAhSgAAUoQAEKUIACvS7A8EQbcoYn2riyVQpQgAIUoAAFKEABClCAAhSgQK8LJGN40uuIAW7I8CQRZoF9oAAFKEABClCAAhSgAAUoQAEKxEGA4UkcEPs6PAlW5IVbFWszuf2pVb0O0OnE/wHcbg88nv7Ue/aVAhSgAAUoQAEKUIACFKBAYggwPNFmHuK28kR0z3/rYfHrnlsIBdqrueewfNdwtx1tJjyRWjWb9JBMBhgNOpGZdDvcHg+cLg/ssgsOF5OURJo39oUCFKAABShAAQpQgAIUSFwBhifazE1cw5N4dpHhSTw1E6stk1GPdIsBerHSpPMQK01qG9uRkyYhy2Ls1mGH0402u0tZkcKDAhSgAAUoQAEKUIACFKAABYILMDzR5ulgeKKNK1sNImCWDEg3G5Sfyk43NlRcR9WNZlTXtSm/FkdeuoQxBemYNSoP80bnKb8nwpXmDgdcXIXCZ4sCFKAABShAAQpQgAIUoEBQAYYn2jwcDE+0cWWrAQQkox4ZVu+qEhGWvLK7GnUt9pBWs0bm4oP3jkK62QjxKk9zu5MrUPh0UYACFKAABShAAQpQgAIUCCLA8ESbR4PhiTaubLWHgEGvQ3a6SfndTZXX8ZcjtVD7Fo54jeczK4oxKj9dqYPS3O6gLwUoQAEKUIACFKAABShAAQoEEGB4os1jwfBEG1e22kMgK82kFIa92NCG/3r7ZMS76QzINONrj0yGqJfSbnfBJruCG3d0QCovgzxrDmDwviLEgwIUoAAFKEABClCAAhSgQCoIMDzRZpYZnmjjylb9BHyv6zhcbjz/RgVuNod+VScY3oqSQfinuYXKjxtb5TsBjNsN04njMO/cBsvO7XBnZ6PpOy/BPWAg54ECFKAABShAAQpQgAIUoEBKCTA80Wa6GZ5o48pW/QREnRMRoByobsAre85HbaPX6/Cz98+EyaBHW9V5GLZshnnXdph374S+8RbcAweh6cXvwfbwu6O+By+kAAUoQAEKUIACFKAABSjQnwUYnmgzewxPtHFlq34CuRkSxK7Ev9p3AXuq6qOysdjaMPnUEXygtQoF+3dDV32uWzsdj/0Tmr7xHXhycqNqnxdRgAIUoAAFKEABClCAAhRIBgGGJ9rMIsMTbVzZaqeAXgfkZEjKr77wtxOqX9nRu5wYd74CU04dwpRTh1F08RT07rvrnLgHDUbjj1+BfelymlOAAhSgAAUoQAEKUIACFEh5AYYn2jwCDE+0cWWrnQK+XXaaO5z4zJ9KQ7roW1vxwBuvYtK1cyi5VAGzHLo2SvsTH8Tt/3oRnswselOAAhSIi8CKR5/Clr/+LC5tsREKUIACFKAABSjQFwIMT7RRZ3iijStb7RQQdUpy0k1wuj342G+OhN5lx+3G9L3r8an//T7S7O1BDT2FI2H7xa/QOOMeOlOAAhSIqwDDk7hysjEKUIACFKAABfpAgOGJNugMT7RxZat+AnmZ3td2nv97Ba40dYS1KWi4hv/48TMYfjVIcVmTCe5xxbCPHA156XLYly2Hc9SYsO3yBApQgALhBBiehBPizylAAQpQgAIUSHQBhifazBDDE21c2aqfQHa6CeL1nZ/vOY/91Q2qbCTZho/9+uuYf2TrXee7ly4FLl6E/uIlwONWfu4xSXCNKIQ8YxbsD6yBfdFSuPMLVN2LJ1GAAhTwCfjCE/G/viPS13hiuZYzQQEKUIACFKAABWIVYHgSq2Dg6xmeaOPKVv0ErGYDrJIB5+va8LV1JyOyWb31j3jfX38Mg3+x2GHDcHP/cbiMJphOHId59w5Iu7bDdLJS2bLYd3isaXCOHgN57j2wrX0E8px58GRkRHR/nkwBCqSWgC/48A9MIlmN0vPcSK5NLWmOlgIUoAAFKEABrQQYnmgjy/BEG1e26icgtikW2xWL489HarGx4npEPuPPHsfT//MFZLTe7rqu7V8+jtsvfu+udnStrZBKj8K8dROkfXtgOnsG4vd8hzsrG87i8ZDvvQ+2NQ/DMXU6PJK3bzwoQAEKBAo7IglAIjmX2hSgAAUoQAEKUEALAYYnWqgCDE+0cWWrPQTEyhOxAsXhcuNLb1TiRrMtIqP3DALe/cKnoDt21HudToe6jTvhmDUnbDv6hnpIRw7BvGk9pEP7YbxwHjp7504+Oh1c+QVwTpykvOojXvlxjJ8I6PVh2+UJFKBA8gkwPEm+OeWIKEABClCAAqkmwPBEmxlneKKNK1sNIJCVZoLRoIPYtvgXe8+j/MqdlSTBwEStlEemD8OayYOhdzqg++hHYf7j75TTnUVjcXPPESCKlSPGSxdgOtwZqJQegfFyLeB0eruhN8A1eLCyKsV+/0rYl97PgrR8oimQIgIMT1JkojlMClCAAhSgQBILMDzRZnIZnmjjylYDCOh0OmSlGZXiseLYeaYOfzpcA7vTW/S15zE0x4p/XTQGhXlpyo9ssgvtdhfSfv0L5HzxaUCW0fqZz6H5ua/G7u12w3TmFKR9e2HetlmppWK4cR2+vZU9JhNcI0Z2FqRdC/uiJSxIG7s6W6BAwgnEOzzhazwJN8XsEAUoQAEKUCDpBRieaDPFDE+0cWWrQQRE/ZNMsQKlM0ARr/Gcr29D9c1WVNe1IjdNwsj8NIzKz8CIPGtXKyI0EeGJ7zAdP4b8978H+vo61G3Zo6wSifehk2WYystg3rUd0q4dMJ2qgP6Wf0FaK5yjiyDPmw/bmocgz7mHBWnjPQlsjwK9LBBreCK6y912ennSeDsKUIACFKAABboJMDzR5oFgeKKNK1sNISDWnZglAyySAZ0ZStCznS6PstrE6bp7dYoITvKeeAz61lbc3HUQMBg0d9e1tUI6dhTmbaIg7V6Yqk7fXZB23HjIC3wFaafBI5k17xdvQAEKUIACFKAABShAAQpQQAgwPNHmOWB4oo0rW1UpIGqgGA165VUeEaR4ALg9gMvlhghOXOIXoQ6nE9nPfx6ugYPQ+tn/UHnX+J6mFKQ9ehjmDW9DOnwQxgvV3QrSuvPz4SiZ7C1Iu3I1HBNKWJA2vlPA1ijQKwL+K0oC3dB/e+Ne6RBvQgEKUIACFKAABQIIMDzR5rFgeKKNK1vtZQHLujfhmDYDruEjevnOgW8XsiCtwQDXoCFwTJ0G+7IVsC9bzoK0CTFr7AQFKEABClCAAhSgAAX6vwDDE23mkOGJNq5stS8ExG45RmNf3Dn8PZWCtKch7dsD89ZNSi2VuwvSFkKeORv2lWu8BWkLBoRvl2dQgAIUoAAFKEABClCAAhTwE2B4os3jwPBEG1e2SoGwAncVpD1ZAX2jf0HaNDhHj/EWpF39EOS5LEgbFpUnUIACFKAABShAAQpQIMUFGJ5o8wAwPNHGla1SICoBpSBt6TFldYr0zm4Yz55RCuL6DndWNpzjiiEvWATb6gfhmDadBWmjkuZFFIhcwGTUK7WZ9Dod3B6PUp/J6XQrtZp4UIACFKAABShAgUQRYHiizUwwPNHGla1SIG4CYntk6chBmDe+DemQKEh7Hjq7zdu++BKXXwDHxEmwL14K+4oHvAVpe2HnobgNkA1RIIEFJKMeFrOha3v1QF0Vxa3tDhfsjrt3BUvgobFrFKAABShAAQokqQDDE20mluGJNq5slQKaChhqLio7+1g2roOp9CgMl2uhEzVfxKEUpB0Meep0yPevhH3JMjhHF2naHzZOgWQTEFuqZ1iNEKtNfEeHw4WL9W242NCGodlWjB6QgSzLnTpLYnewlg4n3OF2CUs2LI6HAhSgAAUoQIGEEmB4os10MDzRxpWtUqB3BURB2qozkN7ZBfO2LXcK0rq9fxPuMZngGjES8sxZynbJYttkFqTt3Sni3fqPgHgtJzPNqGyhLo6jNY14o/QKLjd23DWIAZlmLJ84CCtKBik/E7lJS7sj/Dbr/YeDPaUABShAAQpQoJ8JMDzRZsIYnmjjylYp0OcCSkHaihOQdm6DedcOmE5VQH+rUUQp3kDFalVWpMhz58O29iHIs+fBk5nZ5/1mByjQ1wLZ6SYlOGmXXfjdwUvYX90QtkvFgzLxscVjkJsmKStPbrc74fGwGkpYOJ5AAQpQgAIUoEDcBRiexJ1UaZDhiTaubJUCCSmgFKQ9Xgrzlg2Q9u2FsUoUpG3p6qs7KwvOceMhL1jYWZB2BgvSJuRMslNaCaRbjDCb9BCv6HzljQrUtcqqb2U1GfD8QyUYnGWBqIPS3O5QfS1PpAAFKEABClCAAvESYHgSL8nu7TA80caVrVKg3wgoBWmPHoJ5gyhIewDGC9XQ2e3e/isFafPhmDgZ9sXLYF+xigVp+83MsqORChgNemSleWuYvLrnPPapWHHS8x6jC9Lx7NqJyo48rR1OyE4WkY10Hng+BShAAQpQgAKxCTA8ic0v2NUMT7RxZasU6NcChtpLkA4egHnzekjHjsB4uVbsyeodk14P1+Ah3oK0y1Z4C9KOGduvx8vOU0AIiAKxYned0pom/Gj72ahR/mHGcDw4bYhS9+R2G1efRA3JCylAAQpQgAIUiEqA4UlUbGEviig8mbTkg90arNz5WsgbhDq/5898DfnavNpwd2G+sKPhCRSggDYCHg9MZ05Demc3zNs2w3TiOAw3bwDdCtIWQp4xG/YH1sC+cAkL0mozE2xVQ4G8TElp/RsbTuHsjdao72SVDPjJ+2Yq14vwRIQoPChAAQpQgAIUoEBvCTA80UZadXgiwo6eYUmg3/N1M9z5oa4VbTA80WbC2SoF4iWgFKStLIe0Y2tnQdpK6G/dKazZVZB23nzY1rAgbbzc2Y42AqJArCgUK3KOp357FA5XbK/bfOPRqRiUaearO9pMF1ulAAUoQAEKUCCEAMMTbR4PhifauLJVCqSkgK69DVLpMVi2bIBJTUHaqdPhMVtS0oqDTiwBk1GPTKsRFxva8MJbJ2Pu3EcXjsH8ony0212wya6Y22MDFKAABShAAQpQQK0AwxO1UpGd16fhSc+u+q9s4cqTyCaSZ1MgUQX0jY3egrTr3oR0+CCMF85DZ7d5uysK0ublw1EiCtIuhX35KjgmTgIMhkQdDvuVpAJmyYB0s0EpEiuKxYY6rrbUQq83YHD60KCnrZ4yBI/NGq4EJyJA4UEBClCAAuoFVjz6FLb89WfqL+CZFKBANwGGJ9o8EH0WngQajv+rPAxPtJlwtkqBRBDoWZDWcLkWOhakTYSpSdk+iEKxomBsdV0bvr4u9MoTj8eNyvpy2JwdmJBfggwp6y63f753FBYXD0CH7EIHw5OUfa44cApQILiACEj8D/+wRE14Eup6ulMg1QUYnmjzBDA80caVrVKAApEIeDwwVp2Bee8ub0Ha8jIYblzvXpB2eCHkWbNhX7kG8vwFcA0J/rf+kdya51JACBgNOmSlmWB3uvGJ3x2FR0WN19v2RpxuqMQN/csoyX4Pxlof6cL80kMlGJWfztd2+HhRgAIUCCAQKBzx/71w4Um464lOgVQXYHiizRPA8EQbV7ZKAQrEKKBzOGCqOAHzjq2Qdu+A6WTggrSOefPRseYhOGbNhTvr7hUAMXaDl6eIgA5AbuduO8/+Xzmu3e58tSzM+O2e29hZ9wXcch1Hun4k5uf9JwZKU/HyB2bDqNehud0JZ4zFZ1NkCjhMClAgyQR6rgwRw/OtLgkXfvh+7t9GuJUp4QKXnrzB2k6yaeBwUlSA4Yk2Ex/X8MT/tZtodtvhazvaTDJbpUCyCCgFaY8fg2XzBpje2QPT2SroWlu6hifCE+e48ZAXLILtgTVwTJvBgrTJMvm9MA7x2o54fWf76Rv47YGaiO541b4PBxq/BbvnBqYXrML/ve9VDEwbgqZWOaJ2eDIFKECBZBBQG474j7XnyhP/sEX8e7hwJNzPg91LTdvJMCccQ2oJMDzRZr5Vhyfi9iLc8D/CbV2s5vxg7bHmiTYTzlYpkGwCvoK0lg1vw3Rov7cgre3ugrTyoqWwrWBB2mSb/3iOx/fqjnhl5+vrT+J8XVtEzbvhRLXt9zjZ8mt44MEnZv0bPjXr85D05oja4ckUoAAF+rtAuPDEF1j4jzOWlSWRBCcMS/r708X+qxFgeKJGKfJzIgpPIm8++isYnkRvxyspkOoChtoaSIf2w7xxPaTSozBcrrm7IO2UaZCXr4R90VI4x4xVdv7hQYF0ixFmkx43Wux4/v/K4XSrKH7ix/bMqvEYkG3DpzZ8Am9W/R3Z5hx87/6X8cCYh4hLAQpQIGUEwoUnsf7cB+l79SbSnXkiDVtSZuI40KQRYHiizVQyPNHGla1SgAKJJCAK0p6tgnn3Dpi3bwlckHZEIeSZLEibSNPWF30RGZooHGvQ61Bzqx0/23kON5rtYbuSaTHiI/eNwdTh2Uqx2dttDhy/cRQfXPcYbrRdw9jc8fjFmj8q/8uDAhSgQLILxBqOhLte+MUSgMRybbLPHceXHAIMT7SZR4Yn2riyVQpQIMEFREFaY2U5LNu3QNq1A6ZTPQrSWqxwjimCtyDtw3DMmsOCtAk+p/HqnghOstJNEGuRHC43/nzkMraduhG0+ZmFufjQfaOQLhmVc1o6nHA43cq/i9d3fl3+Cl7Y+0XILjveVfw4Xlz6I2SYMuLVXbZDAQpQIOEEeoYTPVeIhAtHovl5JAiB+hfp6pVI7sdzKdDbAgxPtBFneKKNK1ulAAX6oYCuo115zce8eSOkfXtgPHsG+ha/grSZWXAWj4d878I7BWkt1n44UnY5nIASoKSZut7mElsYX23qQF2rHXUtduSlSRiYacbgbAvSzd7QpGdw4n+PdmcbPrftk3jj7F8gGcx4YdG38f5JH4ZOiWh4UIACFEg+gZ672QSBB2dJAAAgAElEQVQLVHwjj6TmSaCdfEQ7kQQg3G0n+Z45juiOQLKEJ+FqqPb2nDM86W1x3o8CFOhXAkpB2mOHYVn/NkwH98F4MVBB2kmQFy+D7f6VcJRMBgyGfjVGdjawgIg1rGYDLFL4+ZSdbrTbXHCLd3ZCHJduX8AH3no3qpuqMCh9CF5d/UfMHDyHU0ABClAg6QX4qkzSTzEHmEACyRCehNu9ty+4GZ70hTrvSQEK9GsBw+VamA/sg7S5syBtbYCCtFOnQ162wluQtogFafv1hAMwGfUw6nXouVDE5fIor+hEVlYW2H5pEz61+UO4bW/CgmGL8eNVv8LAtMH9nYn9pwAFKBBUoLfCk2CrUnwdi2R1CqeTAv1VIBnCk0D2gQKV3pwjhie9qc17UYACySngK0i7ZwfM20IUpJ0xG/ZVayDfcy9cQ4clpwVHpVrA6Xbgmwe+gpdLX1KueWrmZ/D0vOe4tbFqQZ5IAQpQgAIUoEAgAYYn2jwXDE+0cWWrFKBAigsoBWlPVsCybXPogrRz56Nj7UNwzJrLgrQp+szUd9ThExufxDtXdiFLysb3l7/CrY1T9FngsClAAQpQgALxEEim8MS/7knlztfiwRN1GwxPoqbjhRSgAAUiE1AK0h4/BvPmDZD27obxXBUL0kZGmNRnn7h5DB98+zHcaOfWxkk90RwcBShAAQpQQGOBZApP/Kn42k6QB+dqQ4fGjxSbpwAFKND3AvqmJm9B2nVvwnRoP4wXAhWknQx58VLYlq3wFqQ13tndpe9HwB7EU0Bsbfx6+c/x1b1fULY2fnfxe/HfS36ATCkrnrdhWxSgAAX6jYBep4PBoIMoOyX+XRTmdrnFP4AnTJHufjNIdpQCcRZgeBJn0M7muPJEG1e2SgEKUCBqAVGQVjqwz7tCpfQIDCxIG7Vlf72w59bGX134LTwx+SPc2ri/Tij7TQEKRCwgdjozm/QQW8cHOxwuDzrsLjhFksKDAhToEkiG8IS77UTwQHPlSQRYPJUCFEhuAVGQ9txZmHdth3l7kIK0wwshz+wsSDtvPlzDhie3SYqMrqb5Aj709uM4fasSg9OH4Ofc2jhFZp7DpEDqCoiwJMNq7BaaNLXLqK5vQ32zHaMHpGNUfjoko74LSWwX39rhTF00jpwCPQSSITwRQ/KvdyJ+zZonQR51hif8M4ACFKBACAGnE6bKcli2bYG0eztMJyuhb7wl1jArF3ksVjjHFMEx9x50rH0Yjhmz4c7JIWk/FdhbuwMfWf+PaHW0cGvjfjqH7DYFKBBewGjQIdNqgk4HuN0evFl2FXvO1qOxXe52sViMMqogHY/NHoHxgzKVnzldHrR0OHz/bzD8zXgGBZJYIFnCk0SbIr62k2gzwv5QgAIUiFJAFKQ1lZXCsnEdpH17YTx7JnBB2gULYVu5Go7pM5WQhUf/EPBubfxVvFz6Q6XD3Nq4f8wbe0kBCqgTEIFIVrqk1Da52tSBn+85j0sN7WEvXlEyCO+ZNRwmgx5cgRKWiyekiADDE20mmuGJNq5slQIUoEBCCCgFaY8egmX9WzAdOgDjhWrobDZv30Thvbx8pQgtC9ImxHSp6oTY2vipjU9iX9fWxi/jgTEPq7qWJ1GAAhRIVIHsdJPyqs65m6341sbTcLq9KynVHIV5aXjuwRIY9Tq0252wyayBosaN5ySvAMMTbeaW4Yk2rmyVAhSgQMIKGK5chrT/HZg3r4dUejRoQVr7/Ssh37cYzrHjlKCFR2IJeLc2fg9utF/HuNzxeHXNHzE2d3xidZK9oQAFKKBCwCoZYDUb4HC68dwbFahrsau4qvspa6YMUVagiMjldquMCLKXiO/FCyiQ6AIMT7SZIYYn2riyVQpQgAL9R8BXkHb3DkjbNkMqL4PhxnXxwrkyBo/RBNcIUZB2Fuyr1kJmQdqEmVuxtfGvy1/BC3u/qGxt/K7ix/GNJT/k1sYJM0PsCAUooEYgN0NSMvrfHriE7advqrnkrnPE9f+5pgRFA9Jhc7jRbmMB2aggeVFSCDA80WYaGZ5o48pWKUABCvRvAVGQ9mQFLCJM2bkdptOV0N/yL0hr6SxIOx+2NQ9BnjmHBWn7cMaVrY23fxJvVP0FksGMFxZ+G++b9CHodXd2o+jD7vHWFKAABYIKGA16ZKUZlXolT/3uaEwFX+eOzsPHFxfB7fGgqdVBdQqkrADDE22mnuGJNq5slQIUoEDSCehsHTAdPwbLxvWQ9u0JWZDWvuIByKIgrTUt6RwSeUD+WxsPTBuEX6z5M2YOnpPIXWbfKECBFBfwvbJz+nozvrXxTEwaBRkSvvWeaUobja1yTEFMTB3hxRToYwGGJ9pMAMMTbVzZKgUoQIGUEBAFaU1HD8G6/m2YDu0PUpB2EuyLl8G+dDkck6YARmNK2PTlIMXWxv+y4Z/QIjdza+O+nAjemwIUCCuQZjbAIhmwrvwa/nr0ctjzw53wg/fOQJbViOZ2h7J9MQ8KpKIAwxNtZp3hiTaubJUCFKBAygoYrl5RVqaYN2/oLEhbC52zc/m0Xg/X4CFwTJ0O+/0rYF+wGM5xxSxIq8HT4nQ78c0DX8bLpS8prX985mfwzLznIOnNGtwtsiZXPPpUtwu2/PVnyq/F7/v+3f+Enuf3vJu4JlibvnMDtRHoXpGNhGdTgAKxCmRYjZCMenxz617sqT6JRkcNWpxX0eq8AngkDNC9CzZnh/JPcV4JBqQNDHnLZ1aNR8mQLLR0OJUCtDwokIoCDE+0mXWGJ9q4slUKUIACFPAJiIK01edg3rU9fEHaBx6EPGceXMNH0C9OAt23Ns7B95f/T59ubRwoIPH/vZ4/D3e+fzjiH4ZE206c2NkMBSjQQ+BcYxXON1XhRN1xnLt1GrXNl5TdwuyuDtzquHWXlwHpyNaXYGr652ExWpV/rEZrWFfx2o54fYcrT8JS8YQkFmB4os3kMjzRxpWtUoACFKBAKAGXy1uQdstGSLt3wHTqJPS3GuB7Qd1jEQVpx8Ix9x7YVj8IedZcFqSN8YlKhK2Ng60s8R9atKFHuOtCrWrhCpQYHy5envICt+1NuNxSg5P1J3CqvhLVTWdxpaUGde030CzfhuySuxnpoEOaKR151nwU543H5IElMGIIjp6TkG4YjAzjMOhhithV1E/5yftmKtc1tTng5n7FERvyguQQYHiizTwyPNHGla1SgAIUoECEAkpB2rJSWDasC1KQNhPO4gmQ710I+0oWpI2QVzldbG38evnP8cLeL8DeB1sbqwlPRD9950USeDA8ieaJ4DUUCC8g/ty42XYdtS2XUF53HGcaTuJCUzWutV5GfUc9WuVmuDyubg3pdQZkSpkYYB2IoZkjMDq3CBPyJitBybDMQgzNGA6DzqBcYzLqkWk14labjGf+Uha+QyHOKBmahWdWjldyeFEwlgcFUlWA4Yk2M8/wRBtXtkoBClCAAnEQ0Dc3w3T4IKzr34Tp0AEYL5yHCFm8hw7uvDylCK198VLYl9wP56Qp8Jgi/9vKOHS1XzWhbG287ZN446x3a+OvLvwW3j/pw5pvbaw2PPEPUALBBnuVp+e5oV7j8Z0bSZ/61SSzsxRQKSDqI11prcH5pmpU1h1HVeNpXGq6gOttV9FouwXx54VHpBF+h0kvIducA7Gr1/CskRiXW4yJA6ZidNYYDMsqVEKTSI68TEk5/Ydbz6LsclMkl3Y799+Wj8O04TmwO9xoszmjbocXUqC/CzA80WYGGZ5o48pWKUABClBAIwGlIO3+vTBvEgVpj8BQG6Ag7ZRpsC9fBfuCRSxIG2IevFsbP4bTt04qX4K03to4kqAi1LnR1EGJZBWLRo8um6VAnwjYXB2ouX0RpxsqcbKhHOduVSmrSMRqEvG6jd1lu6tfVmMaci15GJQ+BCOzRqM4fyImFUzF8KxCFGaNQpoxPa5j8W1X3Gxz4ot/O4EOuftKFjU3mzs6Dx9fXAQR89xulcE3dtSo8ZxkFWB4os3MMjzRxpWtUoACFKBAbwmIgrTnz8G8Yxuk7VsglZfBcOM64PbusuAxGuEaUQh55hzYH1gDefY85dc87gj4b2187/DF+MnKX2Fg2uC4EzE8iTspG6QAGmz1uNxcg4q6MpxuqMD5pnO42lKLuo46Zbtyp7tzt7NOK1FvJMOUify0AuX1mVHZYzAhfxLG50/C8MwRGJ5ZCKO+91fwZadLMOiBPWfr8Kt3LkY0s+lmI/773VOQaTGi3e6CLYrwJaIb8mQKJLgAwxNtJojhiTaubJUCFKAABfpSoKsg7abOgrQV0N+61b0g7egiyPPmwy4K0s6cA3dubl/2uM/v3XNr46dmfhZPz3s27lsbR7NqpCdONG2ovabPJ4IdoICfgNvjxrXWK7jUfEGpN1J16xQuKvVGruCWrQFtcivc6L4dr1FvRKaUrbw6I1aKFOWMw8SCKSjKHacEI2I1iQhQEu0w6HXISjNBpwP2nqvHHw7WoMMRfgXKiDwrPrF0HAZlmpWticUWxTwokOoCDE+0eQIYnmjjylYpQAEKUCDBBHR2m7cg7fq3IO3bC+PZKuhbmrt66c70K0i7YhXk6TPhSYvv0vQEIwnYHfGF7GMbnsC+K7uQZc7G95b9D1YXPRLXrosgw/8ItNtNNK/t9Oxkz5onoX4e1wGyMQqoFHC4ZNS0XFK27q2oP4GzYgvflku40XYNTbZG2JwdSqFn/8NsMCPHLF6pGYwRWaMwLm+C8kpNYfYoDMsYobxu018Pk0GPDKtRCVAa2x34+e5qnL7eEnA4er0Oj0wbirVThkD8u9PlUYKTnvVZ+qsF+02BWAQYnsSiF/xahifauLJVClCAAhToBwJ3F6Sths7me/9fB3d+HhwTJ8O+ZFnKFaTtvrXxBLy65g8Ymzu+H8wqu0iBxBHwbeF7qr4cJ+srUN1UhSvilZr2m2iWmwJv4WtMQ15aAYakD8PI7DEYnzcREwsmK7vUjMweFffVYImj5e2JWIEiAhTxv+Jo7nDienMHbrbY0dzhwKAsCwZkmjEk2wIRtoiDBWITbRbZn74WYHiizQwwPNHGla1SgAIUoEA/FTBcu6qsTDFvWgep9CgMl2uhc3TWDNDr4Ro0GI6p070Fae9dCGfxeCh/TZqEh3dr41fw1b1fhCy2Nh73OL6x9IfIlLKScLQcEgUiE/Bt4Xu5pQYnbpYqr9Scv30O11rCb+FbYB2IYZnDMSZnHMbnlaA4f8JdW/hG1pvkO9siGWA26btClEAjdLjc6LC7lFUnPChAgTsCDE+0eRoYnmjjylYpQAEKUCCJBIzVZ2HeuQ3m7VthOnE8QEHakZBnzoJ91VrIc5KvIK3YqvSZbZ/Am2f/V9na+IVF38b7Sj6k+dbGSfQIcSj9UKBrC9/GalTWl+Fs42lcbDqvbgvf9EFKfRGxWqukYApGZxdFtYVvP2SLe5f1Oh0MBh3EQhTx726PBy63+EeUsWJoEndwNpgUAgxPvNM4ackHUbnzta45Fb8Wh//vRTLhDE8i0eK5FKAABShAASEgCtKeqoR580aYd+9Q/l1/qyFwQdoH1kKeNTcpCtIqWxuve1zZ8lTsxvPK6t9hzpD5fCYo0C8F7mzhexKnGkS9kSpcVuqNXFdeqbE5A23ha0WuJb9zC99RnVv4TtNsC99+CctOU4ACfS7A8CRwcOILTXqGKmonrE/DE1/y4+usfwJ0taFD7Rh4HgUoQAEKUKDPBe4UpH0b0r49oQvSLl8FeUb/LUjrv7XxguGL8WONtjbu80llB/q1gG8LX7Fq5HR9pfJKzZXmWtR3iHojobfwHZI+HKNyxmBCXgkmFEzu0y18+/UksPMUoECfCDA8SbLwJFDa4/97DE/65HPGm1KAAhSgQBwFdC0tkA4dgHX9mzAdOgDjhfPQ2Xx/OaCDOy8PjhJvQVp58TI4Jk2BR5Li2APtmhKvNLx44Mt4pfQl5SYfn/kZPDPvuaiLWbbIzaylot10JV3Lvi18a5ovoryuFGd8W/i2XcWtjvqwW/gOyxqBopxilBRMRlFucUJv4Zt0k8cBUYACmgswPOkengR6fSeaV3f6bOUJwxPNPzO8AQUoQAEKJKCA4fo1SO/shnnTekilx2C4XNOjIO0QOKZOg335StjvXZTwBWnjtbVxu6MNWy6sxyPFj901a2IbUsmo99Y80IvaB966B6LegSh5IIpFyk53As42uxStgOy2o7a5BudunUFl1xa+F3G99Rqa7KG28M3FwPQhKMwa6beF72gMzyhEjiU32u7wOgpQgAL9SoDhCcOTfvXAsrMUoAAFKEABtQLG8+dg3iEK0m6B6UQZDDeuAW5vGOAxGuEaUQh5xmzYRf2UOXPhGjFSbdO9dp7Y2vif334PbrZfx7jc6LY2fv+bjyivAOVa8pQNjCwmAySTAZ27kYYciwhR7E4X7LJbKSbJI7EFurbwbajAKbGFb6OoN1LTuYXvbWV3J/9DBx3SxBa+1gIMTh+qvFJTnFeCkgFTMCxjREps4ZvYM8reUYACiSTA8MQ7G4EKxEZb70S0x5UnifSUsy8UoAAFKEABISAK0p4+qaxOMe/eGbwg7dx7vIGKKEibl9fndsrWxhWv4Kt7Orc2Ln4c31iifmvjF/d/GZeaL+CXD/4WVrNBWWEijqYmOw4euorLtW1oarKhsdGG9HQTcnLMKCiwYsaMQRg7Nqdr/HaHG+12p7IqhUfvC/hv4Vt+0/tKzYXb53C15QoaOuogXtFyeVzdOqbX6ZXXtgqsAzA0cwTG5IzFhPxJKM7jFr69P4O8IwUo0N8FGJ5oM4MMT7RxZasUoAAFKECBuAooBWlPHIdl3VuBC9JmZCqv+Mj3LYb9/pV9WpBWbG38uW2fxBtn/wLJIOGrC7+N90/6cNitjfde3on3/n0N/vb4m1hdtAZ79lzG3/52FmfPNYa1zM4yY9WqUXjssfGwWo0Qi09aOxzKKz084ivg28L3QlM1Kuq8W/heajqPa23X0GhrgJj/nlvImvQmZJtzMDB9cOcWvsWYWDAFY7LHcgvf+E4PW6MABSgAhifaPAQMT7RxZasUoAAFKEABzQW8BWn3w7L+LaUwrfHieeg6OgvSiroguZ0FaReLgrRL4Zg8tVcL0kaytbFBr4NJcmHo9/ORYcrCQ5deQW21I2LDjHQTPvzhKVi5cpRybbvdBZvcfZVDxI2m2AViC99LTRdQ1XgaJ+tPKHVHalsu4WbbddxWsYVvYdYoFOdNxOQB3MI3xR4dDpcCFEgQAYYn3onoubuv//SwYGyCPKzsBgUoQAEKUKCvBPT1dTDv2g7zpg2QSo/AcLm2R0HawZCnTocstkuefx8cxeNFFVZNu+u/tfG9wxbjpRWvYkjGsK57iuAkK90E8ZLOkl8sxcGbezDk5mKUnPtk1P167+MT8IEPlCjXt9mcEK/y+A6xQ0uWORs55tQsIFrfUYcrLbVQtvBtOInzTWfDb+ErZSLfWoAh6cOUeiPj8yZhIrfwjfr55IUUoAAFtBRgeHL3VsXx8O6zlSeBkiD/9IdbFcdjetkGBShAAQpQADBeqIZ5+1ZvQdryMogdf+4qSDtzDuyr1kCePQeuQu+qjXgePbc2fmrmZ/H0vGdhNliQlWaECFBOn76Ff/zxZ3Fm2O+UW8+ofB55t6dE3Y0HHyzCxz82Tbm+pcMJ2enCz0t/BKfHiU/M/Peo203kC31b+IqVIidulqKq8RQuNlbjWpuoNxJqC98sDLAOwrDMESjKHacEI2Nzx3ML30SebPaNAhSgQBABhidJGJ6EetoZnvDPAgpQgAIUoIBGAv4FaffshOlkJfS3GuCrsOoxW+AcMwby3PlxL0irbG288Qnsu7xLWf3x4wdewWMlj6K+vgOf/vR21HoqcGTqs8rAzfY83FP6AxjdlqghRHgiQpSqW1V48u9PoMA6CL9+8H8hdm/pj4dvC1+xO41YOVLVcBq1LeG38M0252JQ+mAUZo7C2PwJmJQ/FSNzuIVvf3wG2GcKUIAC4QQYnjA8CfeM8OcUoAAFKEABCkQpoJPtMJWJgrRvQNq3F8ZzVdA3N3e15lYK0k6AvGDhnYK06RlR3g2orD+Bf377UVxrvYI5Q+Zh+NGPoPliDsROLbvmPQmXwbtV7dAbyzGx+l+jvo9O70bRk6V4rfoHGJo5HJse3490Kfp+R90RlRf6tvA93VCBk2IL36YqXG6uQV3HTTTbg2/hm2vNV16pGam8UjMRJQOmYnhGIQqzR0LSm1XenadRgAIUoEAyCDA8YXiSDM8xx0ABClCAAhToNwK+grTW9W/BFKIgrShGa1+8LOKCtJlpRvzh5G/w2befRrvnNgZfXYbxVz6AyqKfoD7/cJfTrPIXkNMyIWK31rQaVI57Ca3pNciQMrD3gwcw2FIEl9iKpw+Oblv41pXhzK1KXGg8h6utvi18W+DyOLv17K4tfLPHYkLBJCUgEVv6Ds0YDoPO0Aej4S0pQAEKUCBRBRieeGdGFIyNpjBssHnt05onoR42vraTqB9F9osCFKAABVJZIGRBWp0ersG+grQrId9zHxzjJwQsSCtqnGSnm9DW7sD7/vn/UJb/a9wYsRV6pxkFzdNws2B/F7PFNgD3HP8+DG5JFb1b58SF4f+LS8PfgEfn3Wnn2TGv4Ln3flgpHCsKyGpx+Lbwvdh0HuX1x1HVcAqiOO311qsQryuF2sJ3QPpgjMgoxNi8YkzMn4IxOdzCV4s5YpsUoAAFUkGA4UnonXbEMxBNqMLwJBU+PRwjBShAAQpQQEOBbgVpT5TBcOM64O7cHthohHNEIeSZszsL0s5VCtKmmQ2wSAa89VY1Xn6lTOldh+UGTgz/GVoHnryrtyOurUbxhQ+FHUVzejUqil9Ch/Va17kjL78bq4xP4Yc/XAax6KSpVQ7bTqAT7mzhe0p5pab7Fr6NsDltd11mNVqRa8nDoPShEFv4jsubgMkF0zAieyRGZo2G1ZgWVV94EQUoQAEKUCCYAMMTbZ4NhifauLJVClCAAhSgQOoKiIK0Z07BvHEdzLt3wnTq7oK0ntmz4J6/AK+fz8XfmjNQU3ARjdkVuJVTgXbrlbvtPDrMLv86slvHBnR16WWcL/wjaoasA3R3XsvJa5qC6SefhQ56vP7r1cjLs+J2myPgqzveLXxrcLK+HKcaKpUtfK+21KKu/SZa5GY43I5u9xZFZzPEFr6WAgzOGIZR2WMwIb8EEwumYHjmCGWnGqPelLrPAUdOAQpQgAJ9IsDwRBt2hifauLJVClCAAhSgAAX8BPwL0roO7cEBQy22Z9zEttFA6RDArWLzG6ttMO4p/R70HmM329sZVago/iFslrpuv2+xF2De8e/A6EqDR+fGP35kCEbP8qD0ShlKb5Sq3MI3GwOsAzAssxBjxBa++ZMxLo9b+PLhpgAFKECBxBVgeHJnbkTdE/8jmtd1fNczPEncZ549owAFKEABCiSFgN1lx2sn/gd/PfMHXG27jNu2Jrg97qjGNvLKIxh76f3KtS69DWdH/hZXhmwO2FZawzi4dTIc1ka4LC3dVqSIC8wGM3xb+I7IHNm1he+onDHKTjU5ltyo+siLKEABClCAAn0pwPDEqx+oYGwsRWQZnvTlU817U4ACFKAABVJEQLz2Irba3XxhHX5/8pdKzZCeh94tweAywuTywOgRNVOccBnc6DACbn3n2W4dxm39GJy5OtRO/gOc1qaggnrZCqltEMy2fKTJAzFzVAk+9t77MSRtOAosI7iFb4o8exwmBShAgVQTYHgSeqedaAMUhiep9knieClAAQpQgAJ9LGA06HCq8Si+vOm/sevGevW9ceugs5thOjYLxoxm2MdWw5XeHvR6g9OKknOfxMBbc5Vz7lswDF/4wjzIDjdaNdpxR/1geCYFKEABClBAGwGGJwxPtHmy2CoFKEABClCAAr0qYDTokZVmxPnzTfiXz/8eF4f/DTcK9sCt79yhJ0Rvhlx8ACVXP6ycoWtrRZN0FIVZr2P7xBY0WQJfOObyGoyqfRIPrRmLj398OmyyC+328PfqVRTejAIUoAAFKBAnAYYnDE/i9CixGQpQgAIUoAAF+lLAVHMROZWlkLftxPk/bcU422XcynDgO/cCr8wC2qTAvRt2fQUmnP9owB9aXC0wWjfhcv5elI+4Btl4Z8cdccHsy0b8tHIBZjz6MDpmzUPr+MnwSEFu1Jc4vDcFKEABClAgRgGGJ15A1jyJ8UHi5RSgAAUoQAEK9J6A/tYtSEcPwbzuTUiHD8J48Tx0dru3A0YjLpgG4Wj2CPxpigE7xtWgYUAtEGDnnUF1CzDp7KchtgcOdzgNHbiZvx/1+TtRn3MGns6tiwe36fDG7z2YK3ZC1uvhGjgIjinTYF+6HPKipXCMnwDowrcf7v78OQUoQAEKUKAvBRie3NHnbjt9+STy3hSgAAUoQAEKBBTQtbdBOn4Mlo3rYdq/F6azZ6Brbe06152dowQUjvsWwfPwg9iWW4fP//X7OOs5AI/ejbT6cchrH4/LI9/s1n5BwxxMrXoaOo+vaqz6CbCbmnB9wG7cGLAXLekXYdQb8YL5EXxmtwOmsuMwXrsCuDpf4TEa4Rw2HPLM2ZBXrIZ9/gK4RhSqvxnPpAAFKEABCiSAAMMTbSaBBWO1cWWrFKAABShAgaQW0DkcMFaWw7JtM6TdO2E6VQn9rYauMXvS0uAoGgfHPffCtuZhyDNnwZOegYr6Mnxz31dw8NpetDnaUGgdB135LIxsXAGTIxPHJ7yIhrxjXe3k3p6E6Sefhd5jjMlz7pzBePyTufjtid/iT5V/QEnBFPxk5WtIM1hhOnMK5m1bIO3cBtPJChjqbgIe72s/HrMFztFj4Jh7D2xrxTjmwJ3LLYxjmgxeTAEKUIACmgowPNGGl+GJNq5slQIUoAAFKJA8Ah4PjGerYN6zA+atm2GqOAHDjcQswagAACAASURBVOuA2+0NGCQJrsJRyooN25qHIM9fAHd+Qdf4b7Rdw3cPfR1vnf0bmuUmWI1pWDFqNf7r/q+hKFsUcd2Ca9db0WqtwcEZz3Rdl9VShJmVX4HBbY7Z8lvfXIySknxllx27w4VDV/fh+I0jeHziE8i15HdrXyfLMJWXwbJpPUx7d8F05jT0t+9siezOzIRzbDHkBQthX7UG8vSZ8FjTYu4jG6AABShAAQrEQyCVwxNfnZOer+v0dK3c+VrE1AxPIibjBRSgAAUoQIHkFjBcuQzpwDswb9oAqfQIDLU10Dmd3kEbDHAOHQbH1OmwL18FedESOEeOvgukzdGKV8t+gt9V/BJXWmth0Bkwe/A9eHres7h3+GKldolVMsBqNqC09Aae/9I7qBz3I1wfsEdpK719BGaVvwCTKz1mbN8WxS63B7fbHFG1J3b2kY4dhWX9mzAd2AdT9Vno2u9sk+zOy4dj4iTIi5fBdv8KOCZNUWq68KAABShAAQr0tkAqhydaWjM80VKXbVOAAhSgAAUSXEDf1ART6RFY170J06H9MJ6vhs5m8/Zap4OrYIASBMhL74d92UpvUVV94NojLo8Lb5/9G35a+j2crCuHBx4U5RbjX6Z9Cu8teQKSvvsKEp1Oh5wMk1IC9r9+tA7/3fIuQOeB1TYIs098DZIzO2a9vFwLXnrpfuTkmJVVJ7LDu1omHoe+oR7mfXth3rhOKYprqLkEsWpFOURB2kGDIU+dDvn+FbAvWgZn0VgWpI0HPNugAAUoQIGQAgxPuFUxPyIUoAAFKEABCsQgoLN1wFRWqhR0lfbtgbHqNPQtLV0tunNy4CgWBV0Xw7ZqjbITjZrtfMtuHsO3DnwF+67shuySMcA6EI9NfAKfnPk0ciyh64OYjHpkWo34zKZP4+VjP4VZzsXs8q/DYr/z2k+0Qzbo9fje95agqCgHDqcbLR2dq2eibVDFdYaaizDvEq83bYLpxHEYr94pSOsxmZQCtPKM2d7Xfe65F66hw1S0ylMoQAEKUIAC6gWSJTyJZaecQNsU+wRD/SyUMleeqH8GeSYFKEABClCg/wi4XErxU8t2UQh1u/LvSkFXXyHUtHQ4isZ6C7qufQTyjJlKQVe1x9XWy/juwa9hXfXf0SI3I02pY7IW/zH/SxiVXaS2GeU8m7sZk18ZrdRCWXnlO6g7E/urOmbJgM99bg7uuWcoYnldJ6KBBDrZ7VZqpphFYV1RkLayHIb6ujvzYLXCObpImYeO1Q/BMWsO3FlZMd+WDVCAAhSgQOoKJEN4EijgiCT0YHiSus8/R04BClCAAhQIKWA8fw7m3TshiS/pZaUwXL/WraCrc+QoOGbOUVY82O9bDHdeXsSirY5WvFL6Q/z+5Gu41noFRp0Rs4fOx+fmPo95wxYodUyiOb518AX8suwn2PqBnZg6cBq++90j2LGzJpqmlGsGDkjDl740H6NGZSs1bW+3y77MKOo243mhUpC24gQsG9d5C9KKFUBNfgVps7LgHDcB8n0LvSuAps1Qdv3hQQEKUIACFFAjkMrhSbhCscIvmmKx4jquPFHz9PEcClCAAhSgQAIJ6OvrIO3drXz5lo6Jgq6XILYOVg6DAa4hwyBP8xZ0tS9equyEE+3hdDvx96o/4eXSH+LUrUrAA4zNHY+PTv8UHpv4/rvqmER6nw5nBxa8PgmvrP497hu5QCkgKyKYI0eu41evVeDSpWbVTVotRjz6aDEeeWQsrFYjnC4PWjocCRWcBBuMUpC29Bgs696Aaf87MInaM+1t3tN1OmX3IkfJZNgXL4N9+Uo4JpQoc82DAhSgAAUo0FMgGcKTQLMar5Un0T4xDE+ileN1FKAABShAgV4Q0LW0KAGJZd2bkA7ug1hhouvo6PpS7RowUPlSLS+5XwlLHMXjgxZ0jaS7pTcO45v7v4IDV/fC4XZgYNpgZVvfp2Z8Nmwdk0ju84uyn2JsbjEWFy5XLhM1UDIsRpEXKMfhw9eVfw4euoaGhs5x+91AvJ4zbdpAzJo1EAsXjUBWpqT81O5wo82mfY2TSMYa6bn6W7dg3rsLZrFl8tHDMNZc9CtIK0KyoUpIJi9fCfvCJcrrPzwoQAEKUIACyRieRBKcaPUEMDzRSpbtUoACFKAABSIU0Ml2mMqOw7J5vbKyRCnoevt2Vyvu7BxltxuloOsDa+GYPFVVQVe13bjcUoNvH3wBG6vfQqujBemmdKwa/SCenvdcxHVM1NxThDLldccxc9CcbqfrdTpYJAPMJn1XiCJO6OhwoqnJjsZGG9LTTcoOOtnZ3XfwkZ1u2GSXsuokGQ//grTK61nXrgIulzJUpSBt4SjIs2bD9sCDkO+9D+6CAcnIwDFRgAIUoEAIgWQKT3yv4UTzqk2sdVN6EjM84ceOAhSgAAUo0BcCopDo6ZMwdxZ0lSrLIV7Huaug67x7YXvwEcgzZ8GTFnsh1Z5DFcVef3bs+/jjqddxo+0ajHoj5g5ZgM/d8zzmDrm3L2S67im2MjYZdZCMemVFSrCKKqIgrFhpIjtccCdnZhJ8HsRzVHUG5i0bIe3yFgY21N30e47S4BwzVtnZx7bmYcgzZ8OTob4wcJ8+ALw5BShAAQpEJZAs4Uksq01YMDaqR4cXUYACFKAABfpewHjpAqTdO71b2JaVwui/YkCSEI+CrmpH6XDJ+GvVH/BK6Y9QdeuUcllx3kT864z/h0eL/wkmg/fVl0Q7xIoUnR6dIYoObo8H7pRLS8LPSldB2g1vw/TObmW3H/1tv4K0/iuYItiSOvydeQYFKEABCiSCQDKEJ7EEJ2IOGJ4kwpPIPvQrgRWPPtWtv1v++rN+1X92lgIU6J8ColaFtG8PLBvehnT0MMSrFuILrXKIgq5Dh0Ge2lnQdckyuEaM7JWBHr62H98+8AIOXtsHp9uBQelD8I8Tn8THZvwbss05vdIH3qRvBETxWenYUVjefgOmg/tgqj7XrSCtUjtnkqidsxz2ZSuU18Og1/dNZ3lXClCAAhSISSBZwpNACGpf32F4EtMjxItTTUAEJz3DkkC/l2ouHC8FKBBfgTu7pLwJ0wGxS8o56Nru7JLiGjAAjpIpdwq6ii+lvmqo8e1KwNZqWi4qhV83X1iHdkcb0k0ZeGDMQ3jmnudRmBn9Ljy90HXeQmMB/4K0gUI+59BhyjbJ9hUPwL5wcUy7Nmk8FDZPAQpQgAJ+AskQnsRjQlnzJB6KbCNpBEKtLIlHeMKVK0nzqHAgFIiLQNfrEJvXw7Rnl/d1iKbGrrbdOTlwFHcWdF39IByTpsS1oKvaQdy2N+GnR7+LP5/+LW6234BRZ8I9wxYogcmcwfPVNsPzUlBAbHtt3rldeb1MKjsOw7UrdwrS+l4vmz1PKVgsz78P7ry8FFTikClAAQoktgDDkzvz4ys46/sdtStXAs0wC8Ym9nPP3oUQiCYciWTlSTTtc8IoQIEkEvB4YBSFOLdvhnnHNpgqTvQoxJkOZ9FYyEpB185CnBoUdFUrKrvt+POp3+HV4z/GucYzymUT8ibhYzM+jXcVP56wdUzUjo/n9ZGAx6OEhOatGyHtFAVpy2Go8ytsnJ4OR9E4OOYvgG3tw5Cnz9SksHEfjZ63pQAFKNAvBRieaDNtDE+0cWWrvSAQabgRSXAiuh9p+70wZN6CAhTQUMBQWwPz3l3KriWm48dgvHoFcDqVO3okybsF7Oy5sK9aA/t9i+HOzdWwN+qa9sCD/Zf34LuHvoYj1w/A6XZicPpQ/FPJB/HR6Z9iHRN1jDwrQgFlBVZlOSwb3oJp726YxJbaTX4FaXNz4RhfAnnREthWroZTrMAymSK8C0+nAAUoQIFoBRieRCsX+jqGJ9q4stVeEFAbbvhevYm0WGzPV3Z8Q4q0nV6g4C0oQIEIBfSNjZAO7lMKupoOH4TYCUdnt3tb6SroOgP2+1fAvnQ5XCMKI7yDtqdfvF2NF/d/BdsubUC7ox0ZUibWFL0LT899FsMzE6uv2kqw9UQR8BakPaIUpJUO7ofRvyCtXg+lIO3kqUoxWvGZco4r7tXaP4nixH5QgAIU6A0Bhid3lH2v7fhe14llF5+IwpNI3xcKdX7Pn/mG5xvU1YaO3niueI9+LKAmPIl0tYk/RyzX9mNWdp0CSSeg62iHdPwYzOvfgrRvL4zVZ6FvbfWOU6fzfqkrEbuMLINtxWo4i8cn5Je6JlsjfnT02/jf079HfcdNmPQmzB+2EM/Mex6zBs9LunnjgPq/gAgpldVcG8WuU0e67zplNMI5bDgc02fCtuIByAuXwDVseP8fNEdAAQpQIAEEGJ54J8EXlPQMTKINUFSHJ5FWqg13frgOMzxJgE9dgnchXHgSa/gRrv0E52H3KJCaAk4nTCcrYNm0HtKenTCdOukt6OrxKB6ioKuzeALk+xahY83DCf86gd1lwx9O/hq/LPspzjedU8YwsWAyPj7jM3hk3Htg1PNViNR80PvvqJXX43ZshXnbFkgnSmEQr8e5XMqAPGYLnKNGwzFnHjpWPwTHvPnKZ5YHBShAAQpEJsDw5E5w4h+i+BTDZRHBtBmeRPYc8uwEEwi3206g7kby2g1320mwCWd3KOAvIAq6Vp+DeccWmLdvham8DIabNwC32/tFLD0dztFFkH2FLGfO7heFLEUdk9212/D9Q9/AseuH4PK4MCR9GN4/+UP4l2mfQqaUxeeAAskj0FmY2bJlQ8CCtO6MTDjHFns/xw8+rGyd7LFYk2f8HAkFKEABDQQYniRheNLzOfHfNogrTzT4FLFJClCAAv1YQPwNtbR3Nyxim+Djx2C4XAtdV0FXM1yFIyHPngPbqrWQE6SgayTc55vO4sX9X8b2i5vQ4epQQpK1Re/CZ+f+J+uYRALJc/u9gM7hUHa3sohX7d7ZDaN/QVqdDu7cPDgmiIK0S2FbtVp57U7UKuJBAQpQgAJeAYYnXodAr+1Eu+pEtNdnK08CPdj+A2F4wo++lgLBisH67hnJ6hQt+8m2KZCqAvrmZpgO7oNVFHQ9dADGi+ehs9m8HL6CrtNmdBWfTLSCrmrnrb6jDj868m38X9Uf0dBRr9QxWTB8CZ6Z9xxmDJqjthmeR4GkF+hWkPbAPhgvVEPX1uYdtyhIO2gwHFOmef9MWLYczjFjk96EA6QABSgQTIDhyR2ZSOu2hnqqlPAkWPFWcWGoqrShUptwNU8YnvDDTgEKUIACQkBnt8F04jgsb78Jaf9eGM9WQd/S7MXRiV06BngLui5eBtuqNf1+lw6bqwO/q/glfnXif3DhdjV00GFSwVR8Yta/KytNWMeEnwsKqBPwFqTdCfPG9ZCOHoah5hJ0snfXLI/RBNeIEZCnz4L9gTWwL14Gd8EAdQ3zLApQgAL9XIDhiTYTyJUn2riyVQpQgAIUCCTgcsF0+iTMm9bDvHsHTKcqob91666CrvYFi2Bbm/gFXdVOstvjxo5Lm/CDI9/E8RtH4fa4MDRjBJ6Y/GF8eOpTrGOiFpLnUSCMQFdB2u1bIB0vheGaX0FaixXO0WMgz70HtjUPQZ47H57MTJpSgAIUSDoBhifaTGlcwxP/1SbhVp6E+zlf29FmwtkqBShAgd4UEEvrzTu2wbxts7eg6/Vr3Qu6jhkLed582B58BPKsOfBY03qze5rf62zjGby470vYWbMFNpcNWVI2Hhz7D/js3C9iaAa3ZdV8AngDCoiCtGervDtw7dqu7MZlqKsDPN7C0u6sLDjHjoe84D7Y1oiCtNPhkcx0owAFKNCvBRieeKdPzRs2kUy06vAk0M39C7z6fu7/e+HeLwr1c4YnkUwjz6UABSjQ9wL6hnqYd22HedMGSKVHIP4GWBR+FIf4MuIaOVIJSMSrN/LCpUm7BWld+w388PA38fezf0aj7RYkg+StYzL3OUwfNLvvJ4o9oECKC4g/l4yV5bCsexPmQAVp8/PhmDgZ9kVLlVd+HOMnKnVVeFCAAhToLwIMT7rvthOveYsoPInXTdW0w/BEjRLPUSOg0wGSUQ+TUQ+DXge9Tgfxey63x/uPywPZ5Vb+lwcFKKBOQNfaCunwAe9uGAf3e4s3dnR4LzYY4RwyVPkbXPvyVbAvXQ7X8BHqGu6nZ7U72/B6xav49YlXUNN8AXqdHpPyp+KTs5/B6jEPw6g39tORsdsUSA0BXUe7UjfF8vYb3j/Tzp+7U5BWFKkePMRbkPb+ld6CtCNHpwYMR0kBCvRLAYYnDE/65YPLTvetgFUywGI2QKeiG7LTjTabEx5mKCq0eEoqCehkWXnlRvwtrbRvD4xVZ6Bvvu0l8BV0nTQZ8qLkKOiqdm5FHZMtF9bhpSPfxom6YxC/Hp5ZiCcmfwQfmvoUMkwZapvieRSgQAIKiIK00t6dsG5cD1PPgrQmCa7CQsgzREHatbAvWgZ3Xl4CjoJdogAFUlGA4QnDk1R87jnmKAVEWJJhNSqrTcRxs8WOiitNqLrRitpb7bhtc2LsgHQUDcjAuEGZmDDYWzDO7fGgpcPJVShRuvOyJBBwu2E6cxrmzRuUV3CMpypgqK/3FnTV6eDOzoGzeDyUgq4PPgLHpCmAMbVWVVTUl+E7B/8Lu2u2we6yI9ucg4fHvgefnvMfrGOSBB8BDoECoQQMl2th3rEV5q2bYCo7DuO1q4DLqVziSUuDc3SRt47T2kcgz54DTzpDVD5RFKBA7wswPGF40vtPHe/YLwV0Oh2y0ozKKzpiNckbZVexqfI63O7gS0qmDMvGB+aPQkGGpIz5druDAUq/nH12OlIBQ+0lmLdvVQq6SmXHYbguvgi4vF8E0tPhVAq63qvsfKN8EUiygq5qvW60XcMPDr+IN87+BbftTZD0EhYW3o+n5z6LaQNnqm2G51GAAskm4F+Qdvd2mCrLYagTgXNnQdrOwFlesFAJVETg7JG8/63BgwIUoIBWAgxPvLKBNqmJxZw1T2LR47UJKSBWnIgaJxcb2vDS1rNo6vAWrAx3mPR6vHfucCybMAgiZ7ndJvMVnnBo/Hm/EhBL0M27RUHX9ZCOioKulyBeyRGHUtC1cCQcs+eiY9XqpC7oqnbS2hyteK38Zfym/FXUtlyCHnpMGTAd/2/Of2DFqDWsY6IWkudRIMUElIK0JytgefvvML/T+apjU6NXQaeDq2AAnCWTYV/c+apj8Xjl93lQgAIUiJcAw5PQO+0I556b36ixZ3iiRonn9BsBEZqI8ESsOHn+jQrUtdgj6rv4b5fn1pZgdEG60kZrh3cpLg8K9DcBXXtbZ/HDNyEd3Afj+WqI31MOUdB16FA4ps6AfbkofrgCrmHcNlfQuDwubKh+Az85+l1U1JXBDTdGZI3Ek5P/Ff885aNIZx2T/vZRYH8pkBACSkHaI4dhWRekIO2QYZCniiLbK71FtkcUJkS/2QkKUKB/CjA80WbeGJ5o48pW+0ggJ0OCXgf89sAlbD99M6peDMqy4IVHJsNk0KG53QEnd+GJypEX9Z5A17ab69+Cee8uGKtOQ9/U5O2A+FvOAQPh8BV0fWAtnGPH8W85e0xP2c1jSh2TvZd3QHbJSh2TR4ofx2dmfx6D0of03mTyThSgQMoIiD+npT07YN24DiaxGrBGrAb0/qWPbzWgeF3Stmot5IVLknZ795SZcA6UAr0owPBEG2yGJ9q4stU+EBBhR2aaCQ6XGx//7dGYXrl5akkR5ozKg83hRruNq0/6YDp5y2ACvvfrN2+AtHMbTCdFQdc6wC3er9cp/3HtKB4PWRR0fehdcJRMTrmCrmofnqutl/GDQ9/AW9V/Q7P9NswGMxaNWI5/n/efmDpghtpmeB4FKECBuAkYrlyGefsWb0HaE8dhvOpXkFbUoSoapxSk7XjwXXDMnJWydajiBs6GKJCkAgxPvBMrap4EO/jaTpI+/ByWOoE0swEWyYCT15rxnU1n1F0U5KzlEwfhffMKlSKzTW3qaqbEdENeTIEgAsp/SHft7FDq3dnB2bmzQ1dB1/noEIUI58yFx2KlZQiBVkcrfnH8x/hd5a9wpbVWqWMydeAMfHrO57F81GoYdAb6UYACFEgcARGYnzsLy8Z1kHZt9wbmdTe77YDmGD8B8n3/n73zAIvrONf/u32XXgWqCJAEQkIginqvVrEd24mT2I7jEsd2XFMcJ7k3N/c6iR33GttxYseJnerEsWxZvVmSJYEAgZBQQ6igAqL37fv/z1lAgIBdYA9leed5FCvaOd/M/Oaw7L5nvvdb4DSkpWA+ePaOMyGBASRA8cTzZrFiO3nyZABvag7tWQLi1Ik4fbIu9xLW5V7sU/CoUB/84vopUozKOqehJhsJyE1AWVsL7d5d0G8UR7gzoT53FgpT8xFunQ7WsVGwpqWjaeVqGrr2YDOsdivWF36MN3NeQkHFETgcdowLiMZdiffjjqn30MekByzZlQRIYBAQsFqlqj769eug/XI3NCdPNKdqOgClsjlVMxHmRUthXLEK1tgJTNUcBNvGKZBAfxKgeELxpD/vN441BAkE+mqk8sQvbDmBgku13a7gYl2xVCnDoPaBWm2HFXUIUF01ZxPGsW/fkQqNSomqelbdGYK3w6CfssLYBE1ONgzCPHD/l1CdLoSyod45b7Ua1shRsCTR0LUvG3mo9CCeP/BL7Lu4Gxa7GUG6ENwU/3U8kvIj+pj0BSyvJQESGHQEpN8pmRkwbBAm4fuhLiqEosFpEu5Qq2EbNRqW5BSYlq10GtKOHDXo1sAJkQAJeI4AxROKJ567mxjJKwm0iCfPbTqO4yV13a6xuPYsqk3VaLI2otKWgSrVP6X+GoTAoIyEr2okvpU+G1PC4zHKZwLGBcTAj1U2vPK+6ZdF2WzSUWv9hs+g3bMLmhPC0LXKeexaPCUMC5eOWpsXLYHxurV8StiHTblQdx4vZT6NDYWfoM5SC51Kj0XjhI/Jf2FqWFIfIvNSEiABEhhaBCRD2t07Ydi8Aersg1CL8vStpxn1sI4fD0vqDBhXrYFp3iI4/P2H1gI5WxIggS4JUDyheMIfDxLoloC/QQ2NWom/ZZ7H1oJSt2k12kpx0XgANZZzqLUWo8F2CSZHKSyO5rKuzZE0So305DrSbySigyYgISwRKREzEBs8EZG+fILjNvBh0FE88dNvbjZ0PXLYmZ/e1tA1Lh6WOfPRRENXj9wNdeZavJP7Ov529H1cbrgIpUKJ5BGpeCztJ1gyfqX0/9lIgARIgASAdoa0eblQl1z10bL7+UuGtJbZc9B0/U2wJE+HQ6cnNhIggSFIgOKJc9OEYWxvjGG72nJ6ngzBHwZOuXMCBp0KBq0KX54ux7t7zvQJU1pUMO6YMwKnKgtx+PIx5JVm43hlAc7XnEVZYykaLPVwwNE6hjCd9NcGYIRvhOSlEB+WgGkjUpAQmohxAeOhVmr6NB9ePHgJKMvLoN+2Gdqtm6DNzZE+mCpo6Cr7hlntFqw7+RHeOvQKjlcclX4exwfE4K6kB3D7lLvho/aVfQ4cgARIgASGPAFhSHu6EPqNnzUb0h69WsFNoYA9OBiWuASY5y+Ecc0NsMQnACoaaw/5fecCvJ4AxZPuK+2IG6A3ogrFE6//0Rk+C1SrlAjwUcNoteOn/z6MmqbeV8l5clU84iL8uyxVLL64na89i3O1Z5BXmoOC8nycqS5EScMl1JiqYXPY2oEX3iqhhjCM8R+HiSHxmBqejOSIVIwPjGU60BC6RRV1ddDt2yN9yNQcFIauZ6AwGqUVOISh67goWFOaDV0XLYU9IGAIrW5oTDWr5IDkY5JxaS8sdguC9SG4edI38EjaEwj3iRgai+AsSYAESGAwExCGtAVHYPjsE2g6M6QdEQHL1CSYFi+FaeUqWMfHDObVcG4kMCwJUDyRZ9spnsjDlVEHiECL70n2uSr8dmdhr2Yxb0IY7pkXLV1b02CBzX71hIk7AcUT8NKGyzhXU4RjFUeRf+UQCqtOSmVRKxrLYbY7q6e0NCkdSB+Ckb6jpHSgKWHTkBI5AzFBEzDCNxIKKNwZln08TEBhNkGTewj69Z9Au28v1KdPQVnX7KUjDF1HjoJlWrLTfG/pCsmMj00eAufrzuLFA7/CxqJPpVNfepUeS6JW4vEZP5V+XthIgARIgATkJSAZ0h7MgGH9p9BmdjCk1WhgGzUG5ukpMC+/DsZlK2EPDZN3QoxOAiTQLQGKJ/LcIBRP5OHKqANEQKtWws+glkZ/fccpHDpf3aOZ+OnU+M0t0+CjVcFksaHB2P4ESY+CddG5zlyHszWnUVh9UkoHOllRgPO151DWWIIGS8O16UC6AIzwiURUQDTiQicjKSINk0OnMB3IE5vREsNuh+bEMehF5Zs9X0BzrADKqsprDV0XLoFx9VpYY1j20ZP4O4slTnD97tCr+PuxP0tipEqhwvSINHx/xs+wYOxS+pjIvQGMTwIkQAIuCChra6HdtQ2GzRuvNaTVG2AdHw3LjJkwXnc9THPnweHrR6YkQAL9RIDiyVXQwvekbetNuk7L9RRP+ukG5jD9R8BXr4ZOo0St0Yp3dp92Wba4ZWZBBg0eWBSLSRH+EIdNakSJ4v6btjRS23Sg3JJsFFTk42z1aVxuuITaTtKBfKR0oPA26UBJSGI6kMtdE+k2ui0boduxHZojeVCVlgJ2p1BmDwqGZVIcLHMXoOmGm6QqOMzvdonUIx0sNjP+ffJveOfQ6zhZeUwSEqMDJ+CepAfxjYQ76WPiEcoMQgIkQALyEVBdugjdts3Qbd8CzeFcqC9dAmxW5+9X/wBYJ0yCec48GG/4CiyJyXBotfJNhpFJYBgToHji3PzODGP7YiJL8WQY/1B569IVCsDfoIFa5Ux32XasFB9lXYDFZu9yybNjQ3H7zCjpxIlovUnXkZtnazpQ7RkUlB1GflmulA50SUoHqugkHUiLIH0wRvmORnSwMx0oNXImxgfGDKt0IGVlpfQhTrdlg9PQ9UIxcjq5EQAAIABJREFUFBanH454CmaJiYVlxmw0rb1RekLGygJy38nt44v7OvPyPrxw4JfSf612K0IMYfhq3DfxvZQf0Mekf7eDo5EACZCAZwm0GtKubzakPdLekDYkFJbJwpB2EYyrb4AlLh5QskKaZzeB0YYjAYon3Vfa6a2AQvFkOP40DYM1CwHFz6CBpllAKa83I/d8Fc5UNOBcRSOqmyyYEO6LmHA/JIwMwIQRzqOkdocDdY3WHvucDAakLelAp6qOSya24sl9ce1ZXJGqA4myyx2qA+kCEOE7Ukr/iQ+dIpV2jQtNGNLpQIqGeuj2fwn9xvXQZB6A+mwRFE1NTqFEGLqOjYI1lYaug+F+FalrL2T8CpvPrEejpQF6tQFLo67DE7P+BxOD4wbDFDkHEiABEiABOQjYbE5D2nUfQ7NvDzQnT0BZXeUcSaWCLSIS5sQkmBcvg3HlKtjGRskxC8YkAa8mQPGE4olX3+BcnDwE9FoVRAljdyxXTRY7Gk1WOPo7V0eepbeL2jYd6FBJFo5ViOpAp6XqQLWmmmuqA4kyr6E+YRjjF4VJofFIDE+WKgQJQ1s/zeDIWVaYzdAczYd+3cfQ7t8L9akTEPnXUlOrYRs5CuZpyTAvXQHj8uuk/882sASqjVV489BL+GfBhyhrKpV8TFIiZuAHM/8L88Ysoo/JwG4PRycBEiCBASMgGdJmHoDh88+gydwPTVEhFA3iwQ/g0GhhGzsW5uRUqbqPackKqYQyGwmQQNcEKJ5QPOHPBwn0ioA4hSKMZDVqJVRKBZQKQKFQSKdLpD82B8w2u/Tf4dhE2sSVhhKcrS3C0St5yC/Lw+nm6kCVTZ2nAwXrgzHSb4xUEWhKeBJSItMxPkDGdCBx7PfkCRg2fArt7p3QHDsKZUVFe0PXKVNhFoauq9bCGjtxOG7loFyzyWbER8f/gj/kviGlmYmfMnHffCfpIXw94VvQqwyDct4DPanltzzYbgpb//3WNVPqro94rbNrBnpdHJ8ESIAE3CUgHojodm2DfvMGqLOzoC4+B4XJWbHQ4eMjlUi2zJyNplVrYZ49Fw6Dj7uh2Y8EvJ4AxRPnFtPzxOtvdS6QBAYXgZZ0IJEGlHclB6cqjuF8nagO1Ek6kEKJAG2gszpQYLQzHSgyDZOC43uUDqQqPg/91k3Q7tgKbX4eVCWXAZtNqF6wBwbBMikelrnz0XTjzbBMnkJD18F1y0hGr/su7MaLmb9CVkkGbHYrwgzh+Gr87Xgw5fvS39m6JtCZ8NHx31z1oXjCO4wESMAbCQhDWv22zdBu3wLt4VyoLl8CrM2GtIGBsE6Mg3nOfMnw3TolEQ6NxhsxcE0k4JIAxZOriFhtx+Xtwg4kQAL9QaAlHehsTRFySg5K6UBnq4tQ2ngZNaYa2B3tSz2LdKAwH1EdKAqTQuIxbcR0TNVFI/7QWYRt2wlNdhZUF85DpORIT5Z8fWGJmeB8srTmBlhmzKKha39sbC/HKKo+hecOPIVtZzeiydoIg9qAZeNX44cz/5s+Jm4y7U70aPtad+JJxxMpYmieQnFzA9iNBEhgaBEQJ1OLCiWvM+2u7dAUHG1nSGsLDZOq5pkXLIJxzY2wTpgoPYhhIwFvJ0DxRJ4dpmGsPFyHXVQ+5Rx2W+5ywW3TgfKvHMKRsjwUlR9HecUZVFhqUK9uL6yENAGjG9WIUARi1Mh4xExdjmnj58qbDuRyFezgikClsQK/zX4B/zr+V5Q3lUk+JmmRsyQfkzmjF9DHxBXADq+7K550FtaVuNLDqbA7CZAACQxNAi2GtJ/+B5ovd19rSCs80YQhbYsn2ugxQ3OdnDUJdEOA4ok8twfFE3m4Druo7ogn7uTwDztw3rxgq/VaN/2aaueK1WpURUXieEosjqRGIXu0AkdN51Fcdw7ljVfQYKlvR0bZnA4kqgM504GmYnpkGiYETepROpA34+7PtRltTfjb0T/jvcNvQpw2UUCB2OBJuC/pYXx18m30MenDZvRWPHEnracP0+KlJEACJDCkCShMRmgzDkC/4VNoMvZBU3T6qiGtVgfb2HGwpKbDuEIY0i6HPSBgSK93OE+e3zecuz/cxZPuShH3tkyx4ErxZDi/u3hw7a7EE1f5+R6cCkMNBAFxbPZ0ofShRPvFTkk0UVWUA3Y7oFTCFhYOS8IUmBcthXH19bDGTOh2li3pQKIi0KHSgyioOIJzIh2o4TJqzF2lA43AWJEO1FwdKCFs2qCqDjQQ2+LJMe0OO/Zc2ImXM36NnNKDUoWmMMMI3Dr5Dtw//TH6mHgIdk/Fk5YPiR3Tcly9J3tougxDAiRAAkOWgGRIu3Mr9Fs2XmtI6+sLa3QszDNnw7j6BphnzWba8BDYaX7fuLpJw1k8cUcccadPZ7c8xZMh8EYwFKbY8mbVVu1t+2HenTezvirFXY09FPgNtTm2M2zLOwTVZWHoau0XQ9e26UCHS0U6UC5OV5/CpfoLqJKqAzn9UlqaVqlFsCEEo3zHICZ4IqaGJSEpMpXpQG7edKeqTuC5/f+HHec2Q5w4Mah9sCJ6DX40878RE8SqRm5idLtbT8STnvR1ewLsSAIkQALDmIAwoJUM67c1G9KWtDGkDQqGZVIcLHMX0LB+AO+R7ny93Pm+4Wrq3vJ9guLJ+91uNcUTVz8JfF1WAp09/XT15NNVfr6r69suiEfW5dteRV0d9OLJzGbxZCYT6uLzV0sF+vrBEhMrGbpKT2ZmDryha72lHmeqC3G84igOl+XgZMUxFNeKdKAyNFg7pgOpEKALQISPSAeKQULYVCRHpCE2aOKwTgcS3iWvZz+Pj4//DcLTRKVQI33kLPxgxn9hzpgFUpoOm3wE3Pnw5+r90dXr8s2ekUmABEjAuwhIhrSfi5O1O9ob0raerJ3afLJ2rcuTtd5Fpv9X4+r3o6vXXc3Ym75PUDyheOLqfufrA0igp29W7rw59eTDf0/6DiCmQT+0yAnWHMyAYX3bnGCn4ODQ6WAbFwVLSjqMK1fBuHg5HP7+g35NbSfYkg4kTqrklmahoPwIztWIdKAS1HaSDuSr9pOqA40NiMJEqTpQCiaHTsX4wFj4a4fW2l1tVKO1AX89+j7+ePhtnK05LQkkE0PicF/yo7gl7hvQqfSuQvB1DxJwdRKvsydvYviOJ/5apsRqOx7cHIYiARIY3gSEIe2xozCs+/iqIa3wdHM44FCrYRs5Cpak6TAJQ9pVa2EPCx/evDy4ene+b7j6/dnddLzp+wTFE4onHvzRYyhPE3DnzUyM2dkJlZZ/70vOvje92Xl6b7qMJ375Hy+A4dOPodkr3OiPQ1nd4Zf/tGSYlq6EcbX3//Jvmw6UV5KNI+V5KKo6hUsNIh2osot0oFCM8hsjnVSZGp6MaRHTERUQDWFsOxROZwgfE5GO82rWs8gtzZZKS4/wicDXE+7Ed5MfRYg+tN9uRw5EAiRAAiRAAkOVgGRIe2A/9Bs/azakLYKioeXhkx5W8fApLR2mFathXLwMDj+/obrUAZ23q+8brl53NXlv+j4xnMUTsc80jHV1t/P1ASXgzptVT/Pze/IG1pO+AwpqAAdXnzkN/YbPoN0ljp0egarsSgdD16kwL1wM49obJZM0tvYERDqQOJFxtOww8ssO4WTF8dbqQOLURtumVIh0oEBEinSgoBgkiOpAEemIDoodFOlAR8sP48WMX2PX+a0w2Yzw0fhiZfRa/GDGz+hjwhufBEiABEiABDxAQEp73uE0pNVkZ0LVNu3ZT6Q9T4Bl1hw0rbkRlvSZcGi1HhjVu0O4+r7h6nVXdLzp+wTFk7uk7T66q/0JFCGqdPbvru6Nltc9ahjbMpmW4B0n29WkOlOGLlU0ubsG9hsEBFy9Wbl6M3J1vaslupMG5CqGN72urCiHftPn0G3bDI0wdL10EQpr/xi6ehNHd9fSkg5UWH0Sh0qycFxUB6o5I1UHcqYD2duF8tWIdCBRHWgcJoVMxrSIFMSHTJE1HUjM5fXsF/DJyX+gylgJtVKNGaPm4gfpP8Os0fOGxEkZd/eD/UiABEiABEhgMBJQlVyGfvMGaLdvhSY/F8KgtvXzmTCkjYuHed5CGG+8GZa4yVLFQrarBDr7vC9ebTm9zu8TV1kNd/GkhURv9Ymufu48Jp50JoC4crFtu5iOQgvFk6H1Vunqzaqn+flt3wjdJdF2jOGU36+or4du9w7oN22AJisT6vNnoTAaJWyOjoauotSeVucuUvbzAIG26UC5JVlt0oEuorqLdKAQQ5gzHSh4EqaGJyFxRHKv0oEaLPX48Mi7eD//dzhfe1YSSIRYc//0R/GVSbfSx8QD+8sQJEACJEACJNAXApIh7fpPod2903kyuLzs6sngERGwJEyFefEyKYXaGhXdl6G84tqOn/e7ElRaFtvT7wTe8n2C4ok8t/uAiidtFSGKJ/JsMKN6FwGF2QxN9kEY1n8CzYF9EL9wlXV1TqGk2dDVnCJyalfBuGToGbp61265t5qr6UB5OHzlEE5WHseFOmd1oM7SgQKldKBRGB8Ug8lhiUiJTJeElXEB46FWamBz2LDlzOd4I+t5KZ4ddozwjcQ3J39b8jEJ0ge7NzH2IgESIAESIAES6H8CrYa0/4bmyz3QnDwBZashrQa20aNhSUqBcflKmFaugT0kpP/nOIhGdHW6fRBNtV+n4m3iiatDGf0Fl+JJf5HmOL0m0NWpld4qyr2eSH9faLdDc+I49J9+DO3eL6S/K6sq27u5JybDtHwl3dz7e2/6abyWdCAhqIjqQMcrCnCutghXWqsDtU8HEiWFhemrOO2iUWqkssvfS/k+Zo9e6HXVgfppCzgMCZAACZAACQw4gbaGtNqM/dLDM0WD02/NoTfAGjUelrQZMK5aA9OCxXD4+A74nPtrAu6KJ8Pt+4S3iCfdZar01z3WdhyKJwNBnWOSQCcEVMXnYPj8U6eh65HDUF0ppaEr75QuCQiBRJwsEZVyvji/DUZrk5SWo1FpYHc4IISXtk2r1CHEEIrRfmOldKDE8CRMCZ+GqMCYIVMdiLcDoFQoWlPgHQ5Iey3+y0YCJEACJDC8CLQa0m7eAE1OFsTnSIXJJEGw+wfAGjsBltnz0LT2RlhS0uDQaIYXoGG+Wm8RT1q2cUidPOlotNL2XmxJt+mN50l3MOh5Msx/4r18+cqqKui2bIB+yyZo8nKgungBCosFUChgDwyCdVIczHMXoEkYhiVMpWGYl98PPVmeSPMRHiYf5P8eF+rOS4JJXEgCHkz9Pm6YeAuESCJaSzpQ/pVDyC/LlaoDXag/h4rG8mvSgVQt1YF8R0kVgSaHJmJ6ZFq7dKCezJF9PUdAqVRAq1ZKf9QqRaeBhXZisdphsthhtQkxhWqK53aAkUiABEhg6BBQlpdB//mn0AlD2sOHIAxqWw1pQ0IkE1rz/EVouuFm6bOm+NzJ5p0EKJ7Is688eSIPV0btbwJNTdIvCFt0TH+P7HI8RWMDtHu+gGHjeqeh69kzUBid1aSEoas1JhbmmbNhXH09zLPm0NDVJdHh18Fqt2LTmU/xRtYLEGWGRfWeSN9RuG3K3bh32vd67GPSkg50oqIAuWXZOF5egPO1zupAdaZaySflalPAV+OLcEMExgVGYVJIApIiUjAxOF7W6kDDb5fbr1icMPHRqyTRpG2rqTGhutqEhgYLgoP1CArSwWBQt3axOwCj2Sb9YSMBEiABEiAB9ZnT0K9f5zzZfOzoVUNalQo2YUg7dRpMkiHt9bCNGTv4gJnNUjEE64RJg29ug3hGFE/k2Zx+FU+6Om7DUsXybO5QiqpUCPFb/I/IVOnZMXRV8XkEPP1/qHrjHUClGtBli9Mj6kPZ8Fm/Dpr9e6E+fQrK2lqnUCIMXcdGwZyWDtPyVTAuXQGHn9+AzpeDD24Cwufkhcxf4csLu2C2meGn8cPq2K/gsfQnJeFCjtZaHaimCNklGZJYc6aqEJcaLqLaVAWLzdxuWHHSJdQnFKP8xmJCc3WgKWFMB+rL3hi0Khh0zvey2loz9uwpRlZWKQ4fLoOpE1EkPMyAmbNGIT0tEqmpEdJ1QkSpb7JIJ1HYSIAESIAESKCVgDCkLTgCw7qPod23B+q2hrQajSSgWJJTYVxxnfR51R4UNODwfP70LhwGA5puva1HcxHfL8QJTvE7UXy/GE6N4ok8u+0x8URMz1Ud5Y4iSWfpQC1pQEzbkWfDB1NUnUYJrUYlHUXveGhQ8mywOaQvCpZuPvzrdmxF8IP3onzdJljjE/p3eQ4H1IWnoF/3b+j2fAH18QKoKivaG7pOS4ZpyXIY194Ie2hY/86Pow1JAiIVR/iYrD/1MWrNNZLx6+xR8/H4zJ9ixsg5UprOQLaWdKC80mwcKcvDKak60HlUNInqQI3tpuZMBwrCSF9RHSgWCaGJSI5MZTpQFxsodtbPoIZGrYTRaMPH/zmJ/3x8Ck1Gq9tbHhMdhG9/e0qriNJgtMFk4SkUtwGyIwmQAAkMQwIKswnaA/uklB/JkPZMERQN9RIJh8EH1vHRsKTPRNOqtTDPXyiZ1PZrczgQft0imJOmo+bpFwD11ROXbechnsPqtSpoVJ2nutrsDul7hTid6e1iCsWTq3dGi+bQnd2Iu/ezR8UTdwd1px/FE3coDc0+4ouBr14lGR+2NJGiX1zViCAfLQL07d8QRS5/g+naNzn/F38D/2d/hbof/RR1P/4v2WEIXxL9hs+g27nNaehaWgLYbJIfiS0sHJaEKTAvXArj9TfCOn7wpQ/JDogD9JpAnbkW7+W9hQ+PvotL9RckgSQ+bCoemv4DrJ1wEzQqba9j9+eFLelAoipQ3pUsKR3oXO0ZXGksuSYdSKzRR+OLET4RUpnlSaEiHSgVE4ImeX06UJO1CedqihAfOqV1e8STMX+DBiolUFRUjaee2o/yCmd6X2/asqVRePzxVOlSo9mORpP7AkxvxuM1JEACJEAC3kVAUV8P/bbN0G3dBG32wfaGtAGBsE6YCPMcYUj7FViSU7oUNDxFRXW6EBHz02CelozKDz+CPSy8Xei2pzZbXrDY7LhQ1YRRQQboOqTBCgGl0eS9DxconjjvgpbDG50d4mgRU3pyj1I86Qkt9u0zAZ1WBd/m4+hmqx0bj5TgZGktTpc1QPx/0UJ8tYgJ80Xq+BDMjHbWrhfiSm2TBTabQyrNFnzfndBv2SidNrmy64DH37BFqk2roeuhbKguFENhMdPQtc93AAO0EBBCw/rC/+DNnJdQUJ4vlRce6Tcat0+5B/dMexCBuoE/JuvJ3WpJByqqLkROSaYzHai6EJcbLnWTDhTmrA4UNAmJEclICJ3qNdWB/nPyHzhbfRqPpj8JcUIn0FcIJwocOHAJL7yQBaMHxI5Jk0Lwi/+ZjcBAnfQBkT4onryjGYsESIAEhh+Bq4a0W6A5nAdVyaVWQ1pbaBiskxNgmr8IxhtvhjVmgscNaf1efQEBv/wf2CMiUfGnv0vlmUUTpzZbPMLK6kzYdLQERWX1KK5slFJ2RBsTbEBMuC+WTY6U/i6aeEBb1+SdDxe8RTzpLlPF1U9gW8GE4okrWnx90BEQb2rizU00IZa8s/s0xBtcdy01Khh3zRkPX51aKsnZkFeA4Nu/BnXhScnfpGzrHlimJfdprcK8Vbt3Nwyb1kOTmQH12SIoGp3pB3ZfP9hiYmCeOafZ0HUuHNqhcQqgT1B4sWwEskoO4KWMp7Hv4hew2C3w1wZgTexNeGzGkxjnP162cQd74JZ0oFwpHSi3TTpQOZo6pAMpFSoE6YIk09zooAlICEuUTGyjAqKlUyxq5dAox/iD7Q/gRMVR/OnGv2BS2AQcP16JJ5/cDZu9rWFv33Zu0sRgPPfcQqjVSukDovigyEYCJEACJEACniIgPjfrP/0PtLt3QlPQwZA2ciTMU6fBvHQFjKvWwjZyVN+GtdkQvnw+NIdzAY0GNb9+HoqHvtcqnOw4fgX/zCpufSDb2WDiQcVXkkdjdeJIqdiQSOOpa7T0bV6D8GpvEU/6gpbiSV/o8doBJSDeqMSTVdE2Hy3BR1nFrUqwq4mJNJ7Hl09CTMYuaO+4DWhokC6p/95jqH3qGVeXt39dmGTlHYLhs0+g3bcX6sITUNbUSH0cOj1sY8fBnJoO44pVMNHQtWds2btLAufrzuLljGew4fQnqLfUST4mc8cswuMzfoL0yNkk54KAOKVTXHdOOqGTd+VqdaArDaUQKU9tqwNdTQeKxLjA8YiXqgOlIiZo4qBLBzJajVj90VwU157DT9N+iay3Y1Df4PkPcPPnjcGTT86QTvBV1bc3/OXNRwIkQAIkQAIeJWC3Q3M032lI++UeqE+Jz9rVTk9Arc5pSJsiDGlXw7j8Ojj8/Xs0vPAYHLFwpjN1HoDt9jtg+u3beO3L8zh8wfmZ3p0WO8IPP1oRJ6XzeGN6K8UT513QWdpOV0Vs3LlvmLbjDiX26TOBAB+NZAx7tqIBv1xfIH2Id7cp7HbcteldLP/0j878HfFGOS4KpV/mAIbuDavURYXQr/sYut27oBbl2YShq90Oh1otqd/i1IppyQoY195AQ1d3N4T93CJQY6rGH3LfwF8L3kdJwyWpmpQwTH0o9UdYHXPDkPExcWuxA9ipJR3odNUp5JSK6kD5UjrM5frmdCB7e7FAp9Ih1BCGUf5jMSEoDtNGJEveI1GBMYjwHdmvhrzC9anCch4z30tBo6URwdWJmHLqEegsnk/Z+tlPZ2HOnFFoMtvQ5MU53gN4K3JoEiABEiCBLghIhrT7v5S8A7WZ+6EqKoKyxZDWxxfW6BhYZsxC0+rrYZ47XxJZumsBv/5f+L38XGuX6okJ+O97n0Fl8Ige7cHi+BH41qwo6ZqaBguEoay3NIonV3fSVVGbnuw5xZOe0GLfXhFoSdcRpk0/X3cEV2q7T9VpO4hPYx2+/7ufYcrxrHZjV3y2BabZ89r9m5SH+dkn0G3fAk3+YahLLl1r6LpgsTMPMyq6V2vhRSTQHQFRxndd4Ud4K+dVKR1DfLEf5TcG35p6L76deL/X+ZgMhbuhJR3oUMlB5JflorDyBC7WF6OiqYt0IH2wVB1IpAOJksuJI5IxLiAaUTKkA4mKAD46FV7Y8Af8PO8BCafa6ovJhQ9gROVMj+IdM9ofb721XCoHX11nhvd8PPQoJgYjARIgARLoJwKSIe32zdBtEYa0mVAVn4fCZHL6CwpD2klxMM+eh6Ybb4Zl6jQpXb+1mc2IXJAOZeGp1n+q8w3ESw/+Bicm9iyd/4mVcZg8MgAWqwN1TZ4//dlPOK8ZhuKJPOQpnsjDlVHbEGgxcTpwugLv7Clym82YS0X48Rs/RFhFSbtrbPd9F1W/+DVUGzdKprGanCyoLrR5ww0Mkt5wTXMXwHjDTbBMSZQq4rCRgBwEhECSeXkfXs54Gvsv7YVIMRE+JtdPuAWPpD8xrH1M5ODtyZgt6UBHruQhrywHJ8oLcL7uDEQ6UL257pp0IF+tH0YYIjAuMFo6rZIckSqlAok//tqeHTsW62gxiX3qqX34U+VTuBSxrXV5EWXzEF/0HahtPh5b8lP/NxcpKRE0j/UYUQYiARIgARLwJAFlRTn0n62DbsdWaPJzob58CbBar1a2nJwA84IlMN54EwIba6BbOK/1VLqYh12pwt9uehCfr7jd7WkljAqQ0neEaFMlHi705Hi826P0f0eKJ/Iwp3giD1dGbUMg2E8rGTL9cd8Z7DlZ7habuRmb8d0PnoZGVLjp0ByRkVCUOAUVp6FrLMwzZsG45gaYZ9HQ1S3A7NRnAmdrTuOlzKexqegzNFjqpTSceaOdPiZpkbP6HJ8BBpZASzrQyarjEKdWjpXn40yNMx2oxlQlmf22bc50oHCMbkkHipiOuJDJXaYDifdE8d5oMlvx9VvXw2Q3Imvaf6He91xrWJ0pBAmFDyGkJtEjMK5bGY2HH57u1dUFPAKKQUiABEiABAYNgS4NaQMCnCfMm70Q2074QOpSvHXXz2Fxkf4jrtGolHjz9hSp4l290QqzxTuM1YereNJZdZ6ubmaWKh40P+acSAsBpQII8nNWp/nJx4ddpuwo7Dbc8a/XsWr7P7qE6Jg9G6Ynfoqq1Flw+PoRNgn0G4FqYxV+l/sq/nHszyhtKJF8TKaGJUk+Jqtirh8yVV76DZgXD9SSDpR9OQNHyvNa04EqmyrQZG0SFtStq5dKEUvpQKMRI6UDJSJ55HRMHjERxYc1ePnFQ1LfJt0VZCQ9AZtaXN/cHAqMLbkOsWdvh8rRt0pf/n5a/O1va6WZiadrbCRAAiRAAiQwFAn4HsmD78Z1UL/wfKtxbMd1FI+MxosPPYcr4WNcLvFnqydjwgg/yRNMeIN5Qxuu4knbvevKGJaGsd5wh3vpGlqq7NQ2WfH4P5xfELpqyqYm/PClRzD9/FGXNOxz5qLstXdgG0/vEpew2KFPBMx2Ez4+/nf8Lvc1qXyuOJEwxm8cvjXtPnx76n1Sig4bCbQl0JIOlH8lF3lXcnCiogDna8+irLHzdCBVUwC0jeEwmCKgUFtRPiLjGqA+TaMx9eSj8G/o23veH99bhfBwg9cZ4/EOJAESIAESGCYELBYEv/o8DC/8xpnS002r1/ngf+97FpcS07rtd0vqGKxJHOlVpuoUT65W2uls83sroDBtZ5i8zwzUMpVKBYJ8NbDaHbj/g6xuq+woLBagqRFR1SVILMhE4rFMxBUehsba+RNSh48P6n7yP6h/8BEpT5GNBDxFQAgkBy7uxYuZv8LBy/thtVsRoA3EjZO+hodTf4Qx/uM8NRTjDEMCovrSpcYinK05hb9s3I2jl0/A5FMGi6ESDl2bUycd2CgcKow/fzOiL90ChaN3Pk6vvrIEsbFBqG20wGqjbewwvP24ZBIgARIYsgQ0+XkIvv9uqE8e73INlyKjkD95hvSnIHoqTEo1HH7KzIZDAAAgAElEQVTdn1T/9uzxWBgX7lWeYBRPKJ4M2R/04T7xEH/nUfOff3IEF6u7/mLQGSeNxYTJJw8h8dhBSUwZd/F0O2MocY0lOQWVv3sfttgJwx01199HAkXVp/Bixq+x5eznaLQ0QKvUYv64JXg87SdIiZzRx+i8nASuEvA3aKBRK/DLXx5ARuYl6QWRtnM4/jnU+57vFpXiSgRSMh5HUGhsj5H+8qm5mD49guJJj8nxAhIgARIggQEjYDIh4De/hN+br16TplPrH4wj8WnIT5iBvISZqA4K7/E0f742AdFhvmgwWmGi50mP+bVc8Oc//1n665133tnjGB988IFk1tuba7sarLvTJTx50uMt4gX9RaClosTv9xRh/+mKPg37/eRgJB/LhGPLVqh3bIOy5LIznk6H2h/+BPWP/ah9KbM+jcaLhwOBSmMF3sp5GR8d/xBljVeghBJTw5PxaPqPsXz8KvqYDIebYADW6KtXQ6dR4qWXsrBj53mUBx/CkYmvtPc7aTMvjQ0IOheNkeeSEViVCmXIOKi1+h7P/IXnFyE+PgR1jVaI8vFsJEACJEACJDCYCWiyMhHywN1QnT3jnKZeLxWIUK5cDtvSZXjoiA2NfRA8xOH1330rDWqlwqtSWnnyxHm7dCaS9FY4EfGYtjOY3y28ZG4GnQoGrQqFV+rx9IZjvV5VuJ8Wv7opUXLFrmmwwGZ3QH3iGHS7dkD3xQ7ovtwNW1Q0Kt9+D9aEqb0ehxd6PwGTzYiPjv8Fvz/0BgqrT0rmnmP9o3Bn4nfxran30sfE+2+BAV+hj14NvUaJj55dj3cKfoG98XnXzEllB2acMyDpXAz8G5YhJ3hun+f97h9WIiLCF9X1ZtiZtdNnngxAAiRAAiQgDwFFQwMCfvlz+L73DixTp8G0cAlMi5bANGuu9NA0wEcDtUqBf2dfwOf5zQ9TezGVBZPCcNecaOl3ovjd6C2N4snVnexYgac3VXZaolE88ZafkEG8jpaSnGKK7+09g72F7pUr7rikH18Xh/jIAClPX+TrX9MsFmgzD0giiiUxCcbl1wFq9SAmw6n1JwG7w459F3fjpYxfI6vkAGwOGwJ1QfjKpFvxvZQf0MekPzdjmI6lrCiHfsdWaLdsgq7wBMrKinDLmnrsG3sViNIBRJeNQmT5bKjrVkNt8/corXWffAUqlVKqtkPtxKNoGYwESIAESMBDBNRHDsOwcT2sE+NgWrAI9pDQayJr1Ur4GdTSKcqffpyPyoaeCx9+OjV+c0sifLRqNBqtMPbhBIuHlu6xMBRPPIayXSCKJ/JwZdQOBMTJE3ECpe7/5xL+9D/5aDR1747dEWB6dAgeXOjM7285dULIJOAOgVNVJ/Bixq+w7ewGqYSsVqXDonHL8GjajzE9It2dEOxDAj0moKivh/bAlzBs+AyagwegPnsGiqarnk87k4Px9bWNKFObAIcCQXUTMaJ8DiLK50JrDezxeO5cED0+EK+/vhR2O1Ddiw+Z7ozBPiRAAiRAAiTQXwQCfDVSus3hCzV4ZZs4Sdyzdu/8aMyNDfO6UyeCAsWTnt0L7vameOIuKfbrM4GW43XHS2rxzu4zqG50TyFOGBWABxbGQqjDjSYbjF5Sf73PQBmgSwLlTWV4M+cl/OvYX1BhLIdSocS08Ol4LP0nWBK1EmolTyTx9vEcAYXZBM3hPOg/+wTa/XuhLjwJZW1t6wAOP39Y4uJhnrsAxsVL8YJqD1449BySIqfja5O/hr1vj4Cx3NdzE+oi0p3fSsCtt8ZL76HivZSNBEiABEiABIYyAaVCgUBfNRQKBTYfLcG/si9Iaf2umjgVL0oT35wyRurqjQ9mKZ5cvQuYtuPqJ4KvD0oC4o0twEcNlVKBRrMNf8k4162BrPA2+VraGCybHCGthx/4B+W2DppJNVob8I9jH+C9vLdQVF0o+ZiMCxiPu6c9gNum3AM/Tfdl6gbNQjiRwU3AbofmeAH0G9dDu3uX9HdlZUVrFTCHTgdrzASYZ86GacUqmFPTYQ8Nk9ZUa67BywefQbAuBLfEfRNxI6Ihjh3/618n8f6fjsi6br1OhT/+cRX8/bWstCMraQYnARIgARLoTwLC90Q8oBWtuLIJv99zGhequq7uGeanxf0LYhE7wvm5sL7JCrPV+wzUKZ4470IaxvbnTyPH8jgBofT6C4MnpUKKLUxkiysbcaXehMvVTTBoVIgI0CMyQI+Jkf4I9XWWOeaJE49vhVcEFD4me4p34KXMp3Go9KDkYxKkC8ZNcV+XfExG+TmfKLCRQG8JqM8WQbdtC3Q7tkKTnwdVaQmkvBfR1GpYx0bBnJoG08o10n9t48Z3OVSDuR6+2qsiXssHPovFjrvv3ojqGlNvp+nyum98PR533JEgPZETT9jYSIAESIAESMBbCKhVSvgbxAkUSL/njlyswaWaJpTVmVBeZ0awnwYj/PUYFWjA1NEBUvEJhwOoa7LC6qWV5yiedC6ctNzzva24w7Qdb3nXGELrELKJTquCXqtCs4bS5eyFOawQTrz1jW0IbdugmurR8sN45eBvsOPsJhhtRugkH5PleCz9SSSNSB1Uc+Vkhg4BZXkZdLu2Q7dlI7SHsqG6UAyFpVloUChhi4yEOSkZ5qUrpTKJIhUHSmWfFijM7sTpk7y8K/j5z7+EXXya83CLiQ7ESy8thlqtZIliD7NlOBIgARIggcFBQAgnPjo1dBoXv5cVCpik9FWrJKB4a6N4QvHEW+/tYb0u8eRVqMUilUcIKeI9TKQq2mx2qaqOO3mLwxrgMFp8WWMp3sh+Af8+8XdUGSskHxMhlDye/hNJOKGPyTC6GTywVMnQdf+Xkpu/ZOh6pggK49VjvvbQUFgSpsIsSiPOXyRV8HJonSfhPNnEe1+gn1ZK+/nss9P43TvXlizuy3iBATq8/voShIQYYLHapadsbCRAAiRAAiTgrQSEiCJOlkjfLZr/OBzO7xQ2m0OqzuPNoknLvlI8oXjirT/jXBcJkEAXBBos9fhrwft4P+9tnK0tknpFBUTjnqQH8Y2Eu+hjwjvHLQKSoWteLvTr1zkNXU+dhLLuqqGr3c8f1knxMM9fANPi5TBPT4HDt/88csRTMl+908T4D3/IxyfrTrm1Lled/Hw1eOqpuZg0KUQ60SLSdYbDB0ZXXPg6CZAACZAACXg7AYonzh2m54m33+lcHwkMcwLCt2TXua145eAzyC3Nhh12BOuFweZt+F7K9xHhO3KYE+LyuyVgszkNXTd9Du2eXdAc62joqoc1JvaqoWvaTNhDQgYcaks5dzGRbdvO4fXXc/p08m7c2AD87//OxogRvpJgUtNglk71sZEACZAACZAACXg/AYonV/eY1Xa8/37nCklg2BE4XHYIr2Q+g13nt8Ek+ZjopbLCj6b/WCozzEYCnRFQnzkN3fatnRq6OtRq2MaOkyreuGPoOtCEhQ+Uj04lTaOwsBrvvpuP/CNlPZqW8JO68caJuPXWSdDr1bDbHVKqDlMge4SRnUmABEiABEhgSBOgeCLP9tEwVh6ujEoCJOAGgdKGy3g9+zn858Q/UW2qknxMpkekSz4mC8ctg0rh/CLJRgKCgGTounM7dFs7MXRVCkPXkTBPE4auK2CePQ+WSXF9NnTtb/IatRJ+ehVEaXfRsrNLsXXrOeTklKCxG78ScdIkfUYkbr5pIgIDddK1FpsD9Y0WyUuKjQRIgARIgARIYPgQoHgiz15TPJGHK6OSAAl0QaDeUo8PjvwBfz78Ds7XnZV6RQfG4t7kh3Br/B3w1fSf1wQ3afASUNTVQZuxH4YNn0JzMAOiZLCiqdnQVaGAPTgElilTYVq4BOYFi2GZOk0WQ9eBIKRUKGDQqa6pGHD0aLl0IqW4uA4VFU0YPz4Q48cHID4+BBERvq1TFWk6okqZyWIbiOlzTBIgARIgARIggQEmMJzFk45pOl1txdFd7/d4lyie9BgZLyABEugpAavdim1nN+K1rOeQX3YIdocdIfpQfDX+Njww/XH6mPQUqJf1dxq6HoL+80+h3deJoat/s6HrnPkwLVvpNHT1uSoWeBmO1uWISgEilcdl2cXmK0Rqjslil0QTGsN6613BdZEACZAACZCAawLDWTxxRadFXKF44ooUXycBEuhXArmlWXj54DPYXbwdZpsZepUeS8evwiNpTyAxPLlf58LBBgmBZkNX3abPoXNl6LpyNcypMwaFoetA09OqlRCl3UU6jyi9KJJ6RAUdIZLY7HZYrCztPtB7xPFJgARIgARIYLAQoHjS+U50Vn2nJ3vGkyc9ocW+JEACLglcqDuPN7JfxLpT/0StqUbyLUmJmIHHZjyJBWOX0sfEJUHv6qAuKoRuxzbpjyY/F6rSEsBulxbZauiakg7TdathTpsB29go7wLA1ZAACZAACZAACZBAPxOgeNIeeF9Om7SNRPGkn29kDkcC3kigzlyLP+W/I3mZCPFEtJigibgv+WHcEvdN+ph446Z3sibJ0HXXdug2b4Q2NxuqC8VQWCzOnsLQNSIS5qTpVw1d4+KBZmPUYYKIyyQBEiABEiABEiAB2QlQPHEi9pRo0rJhFE9kv3U5AAl4JwGr3YKNRZ/ht9kv4EjZYThgR6ghTDJ9vX/6Ywj3ifDOhXNVEgGnoes+6Deul4xd1WfPQGFsY+gaEgpLwhSYFiyBedESWKYkeo2hK28BEiABEiABEiABEhjMBCieOIWT3viadLevFE8G813PuZHAICSQXZKBlzOfwd4Lu2Cxm6FXG7A8ejUeSX0CU8KmDcIZc0p9JaAwGaE5nAv9+k+h3d+NoevcBTCJMsHDxNC1r1x5PQmQAAmQAAmQAAnIQWA4iyeePm3Sdn96JJ50LPvjrpLTmerTVQmhlpiXKpqfYMpxNzEmCZBAjwiIksKvZj6Lz0//ByJFR/iYpEbOcvqYjFkCpULZo3jsPIgJCEPXY0eh27IRut07pb8rKyvRUr7FodfDGh0L88zZMF23xmnoGhw8iBfEqZEACZAACZAACZDA8CJA8cT1frurZfRKPOlKAOlu0LYCScd+ro7RUDxxveHsQQJyEqgxVeOP+W/jL0few6X6C9JQE4In4b7kR3Bz3Dfgo/b+UrFy8h0ssa8aum6FJv8wVKWXOxi6RsGcmgbTyjUwp6XT0HWwbBznQQIkQAIkQAIkQAJdEBjO4omcN4XbJ096I560TLw311I8kXPbGZsEOidgsZml0yVv5ryMgop8OBwOhBnCcevkO/Hd5IfpYzLEbxzV5UvQfrlbOlWiPdSZoetImJOSYV62AqbZ82GdFEdD1yG+55w+CZAACZAACZDA8CNA8USePR9Q8aTjktqeTqF4Is+GMyoJdEYg8/I+ycdk/8XdsNgtMKh9sCJ6DR5O+xESQhMJbQgSUNbWQpO5H4aN66HJPAD1maKrhq5QwB4SIpm4mhYuhnnhElimToNDoxmCK+WUSYAESIAESIAESIAE2hKgeCLP/TBg4klny2l7QoXiiTwbzqgk0ELgbM1pvHrwWWw4vQ71ljrJx2TGyDl4NP1JzBuziD4mQ+hWkQxd8w5Bv2G9dLJEXXgKyrra1hXY/f1hnRQPszB0XbYC5uQUOHyYdjWEtphTJQESIAESIAESIAG3CVA8cRtVjzpK4klX5q0iUstpkN6k3rTMxJW/SWf9KJ70aB/ZmQTcIlBtrMK7h9/EX4/+ESUNl6CAAhNC4nB/8mO4Ke5W6FUGt+Kw0wASEIauBUeg37oJWsnQtQDKyor2hq4xsTDPoKHrAO4ShyYBEiABEiABEiCBASNA8UQe9Dx5Ig9XRiWBQUPAbDdh3cl/4e1Dr+BERQEccCDcEIFvTLkT30l6WPI0YRukBBwOSIauu7ZDt10YuuZBVVpyraFrSpqz8k3aDNjGjhuki+G0SIAESIAESIAESIAE+oMAxRN5KHtUPOnqhIm7p1aYtiPPJjPq8CMgBJKMS3vxcsYzOHBpL6wOq1QdZ2XM9Xgs/UlMDI4bflCGwIpdGrpGjoRlWjJMS1fANHcBrBMn0dB1COwrp0gCJEACJEACJEAC/UmA4ok8tN0WT8TwHdN7XJUf7iwdqO013cVj2o48G86o3k2gqPoUXsn8DTad+RQNlgaolGrMFD4maU9i7piF9DEZRNsvGboePADD559CczAD6jOnoTAam2eogD00BJaEqTAtXArToiWwTkmkoesg2j9OhQRIgARIgARIgAQGKwGKJ/LsTI/EE3mm0HlUiif9SZtjDWUClcYK/D73dfy94M+40lgi+ZhMDI7HA6mP48aJX6WPySDYXIWxyWnounE9tPv2Qn3qBJR1da0zs/sHSGWBzXPmw7R8JczTU+Ew+AyCmXMKJEACJEACJEACJEACQ40AxRN5doziiTxcGZUEZCVgshnx8Yl/4J1Dr+JU1QnJxyTCJxLfnHI37p72AH1MZKXvIniroetmaL/YAc3xo1BWVrY3dI2OhXnmHJhWrYE5JR324OCBnDHHJgESIAESIAESIAES8CICFE/k2UyKJ/JwZVQS8DgBu8OOfRd345WDzyDz0n7YHFb4anyxKuZGPJz2BH1MPE7cjYDC0PW009BVu2MrtNcYumokA1ezZOi6Gub0WbCNGetGYHYhARIgARIgARIgARIggd4RoHjSO26urqJ44ooQXyeBASYgTpa8nPk0tp75HI3WRqgVaswaPR+Ppv0Yc8YskNJ02PqHgOrSRWj374Vu8wZoD2VDVVwMhdXiHFyphI2Grv2zERyFBEiABEiABEiABEigSwIUT+S5OSieyMOVUUmgTwTKm8rwu9xX8c9jH6K88YokkMSFJODB1B/g+gk3QafS9yk+L3ZNQDJ0zTwAw8bPpP9ea+ga2mzouhimxctgTZhKQ1fXWNmDBEiABEiABEiABEhAZgIUT+QBTPFEHq6MSgI9JmC0NeGjY3/B7/PeQFHVKaePie9I3J5wD+5OegAh+tAex+QF7hFwbejqD+ukeJjnLnAauian0NDVPbTsRQIkQAIkQAIkQAIk0M8EKJ7IA5ziiTxcGZUE3CIgfEz2FO+UfEyySzJgc9jgq/HD6tiv4NG0JxATNNGtOOzUAwJWKzQFR6Dfthna3TuhKTgKZVUHQ9eYCbDMmAXj6uudhq5BQT0YgF1JgARIgARIgARIgARIYOAIUDyRhz3FE3m4MioJdEugoCIfr2Y+i21nN0KcOFErNZg9aj4eTf8xZo+eTx8TT90/PTJ0XQNz+kwaunqKPeOQAAmQAAmQAAmQAAkMCAGKJ/Jgp3giD1dGJYFrCJQ1luLNnJfx7+N/RYWxXBJIJodOxUOpP8Sq2BvoY+KBe0Z18QK0+7+EbssGaHOyobrQiaFrYhKMy1bCPG8hrBMmAgoa7noAPUOQAAmQAAmQAAmQAAkMEgIUT+TZCIon8nBlVBKQCDRY6vHR8Q/xh9w3caamUPq3kX6jcfuUe/DtxO/Sx6QP94myuhrarAzoN66/1tBVoYA9pL2hq2VKIqBW92FEXkoCJEACJEACJEACJEACg5+At4gnUxbd1Q720V3vDyh8iicDip+DeyMB4Vuyu3g7Xs58BrmlWZKPiZ/WH2tjb5JOmdDHpOe7Lhm65uZAv2kDtPv2QH3qBJR1da2B7P4BsE6Kg3nufBhXrIIlaToNXXuOmVeQAAmQAAmQAAmQAAl4AQFvEE+EcNJRLOns3/pzuyie9CdtjuXVBPLLcvFa1rPYcXYzjDYjNEoN5oxeiEfTn8DMUfPoY+Lu7nc0dD12FMpKGrq6i4/9SIAESIAESIAESIAEhjcBiify7D/FE3m4MuowIVDacBm/zXkJHx//G6pMlZJAkhCWiIdTf4TrYq+HVqkbJiR6uUxh6Fp4CrrdO6HbvgWa/DyoSksAu10K6FCrYRsbBXNKKkzXrYV5xizYRo/p5WC8jARIgARIgARIgARIgAS8nwDFE3n2mOKJPFwZ1YsJ1Fvq8bej7+P9/LdxtqZIWukovzH41tR7cefU7yJIH+zFq+/b0toZuh7Khqr4PBRWqzOoUglb5EiYpyXDtHQFzPMXwRo7gYaufUPOq0mABEiABEiABEiABIYZAYon8mw4xRN5uDKqlxGw2q3YdX4rXjn4DPKu5MDusMNfG4C1E27Gw6k/xPjAWC9bcd+XIxm65hyE/vNPocncD/WZIiiMRmfgFkPXyVNgXrQUxiXLYEmYSkPXvmNnBBIgARIgARIgARIggWFOgOKJPDcAxRN5uDKqlxAQhq+vZT0nCScmmwkapRbzxyzGw+k/woyRc+hj0rzPiqZGaHNzoNssDF33Qn3yBJT13Ri6JqfAoTd4yV3CZZAACZAACZAACZAACZDA4CFA8USevaB4Ig9XRh3CBC7VX8Bvs1/EJyf/iWpTlSSQTAlPwqNpT2B59Gr6mAhD16P50G/fCu0XO6CRDF0rWndciCLWmFhYZs5G0+rrYUmdAXtAwBC+Izh1EiABEiABEiABEiABEhg6BCieyLNXFE/k4cqoQ4xAnbkWHx55F3/KfwfFdeek2Y/2G4tvT7sPtyfcO3x9TISh66mT0O0Rhq5brzV01WhgGzsO5ulpMK1cDfOsObCNGj3Edp/TJQESIAESIAESIAESIAHvIeAN4onYDVGauG3rWLq4v3eM4kl/E+d4g4aA1W7BtrOb8NrBZyHKDNthR4A2EDdM/CoeSvshxvmPHzRz7a+JqC4UQ5uxz5l+042hq3npCpho6Npf28JxSIAESIAESIAESIAESMBtAt4inri94H7qSPGkn0BzmMFDILskA68efBZ7infAbDdDo9JiwZgleDjN6WMyXJqyqspp6LrhM2gyD0B95vS1hq4JU2BeuATGpSuchq4q1XDBw3WSAAmQAAmQAAmQAAmQwJAkQPFEnm2jeCIPV0YdZAQu1J3HG9nPY92pf6HWVCP5mCSGJ+MR4WMyfrUkoHhzu8bQ9dQJKOs6M3RdAOPKVbAkTaehqzffEFwbCZAACZAACZAACZCA1xKgeCLP1lI8kYcrow4CAjWmavz5yB/wwZHf42JdsTSjsf5R+Hbid3HblLsRqAsaBLP0/BQUFgvUwtB1x1Zod++CpuBI54auM2ajac0NsKSm09DV89vAiCRAAiRAAiRAAiRAAiQwIAQonsiDneKJPFwZdYAIWGxmbCpajzdynsfR8sNwOBwI0AXipolfxwOpj3ufj0mLoevundDt6MbQNSUNphU0dB2g25LDkgAJkAAJkAAJkAAJkEC/EaB4Ig9qiifycGXUfiaQeXmf5GPy5YUvYLGboVVqsTBqGR5O/RHSImf182zkG05VfB7azP1OQ9ecbKgunIfCanUOqFTCFjkS5sQkSIauCxfDGjMBUCjkmxAjkwAJkAAJkAAJkAAJkAAJDCoCFE/k2Q6KJ/JwZdR+IHC25jTeyHoR6ws/Rp2lFkqFEtPCp0s+JkujrhvyPibtDV33Q32mqBND16kwL1xMQ9d+uN84BAmQAAmQAAmQAAmQAAkMBQIUT+TZJYon8nBlVJkIVBur8H7+2/jw6Hu4XH9RGmVswHjcnfgAbptyF/y1ATKNLG9YRWMDtLk50G3ZBO2Xu6E5dRKK+jaGrgEBsE6Mg3nOfBhXrXEauur08k6K0UmABEiABEiABEiABEiABIYcAYon8mwZxRN5uDKqBwmY7SZ8fnod3sx6EccqjsABBwJ1wbgl7hu4f/pjGOM/zoOjyR+qvaHrTmgKjnZu6DpzNppWXw9L6gwausq/LRyBBEiABEiABEiABEiABLyCAMUTebaR4ok8XBm1jwSEQJJxaS9ePfgc9l3cDavdAq1Kh8XjluOh1B8iNXJmH0fop8uFoevJE9Dt/cJp6Ho4F6rSEsBulybg0GhgGzsO5umpMK1cA/PsubCNHNVPk+MwJEACJEACJEACJEACJEAC3kaA4ok8O0rxRB6uLqMuv+XBdn22/vstl9cMhw5F1afwWtbz2HD6EzRY6qGEEkkRqZLx67Lx10Gt1AxqDJKha8Z+6LZ0Y+g6LRnmJcudhq6xEwf1ejg5EiABEiABEiABEiABEiCBoUWA4ok8+0XxRB6u3UYVwklHsaSzfxuAqQ3IkJXGCrx3+C389cgfUdp4WZpDVGAM7p32Pdw6+Y5B62MiGbpmZ0K/cT00Gc2Griajk6FCAXtIKCwJU2BauBSmZStgmTwFUKkGhDEHJQESIAESIAESIAESIAESGB4EKJ7Is88UT+Thiu5OlnhCPGkbfyieWjHZjPj01L/w9qFXcKLimORjEqQLxlcn34b7kh4ZdD4mkqHroRzot26EZt9eqE+dgLKujaGrfwCsk+Jgnjsfxuto6CrTjxXDkgAJkAAJkAAJkAAJkAAJuCBA8USeW4TiiQxceyOO9OTkSce+PblWhuW6HVIIJPsu7MarWb9BxsUvYXVYoVPpsSRqJR5K/QGmR6S7HUvOjgqzGZqj+dDu3A7dFzugOdbB0NVggDU6FuaZs2FcfT3MaTPh8PeXc0qMTQIkQAIkQAIkQAIkQAIkQAJuEaB44hamHneieNJjZK4v6Kl40lPxo6f9Xc9Y3h6nqk7gtYPPYtOZz9BoaZB8TKZHpks+JkuiVgysj4nDAc2J41J5YN32LdDk53Vh6JoG08pVUqlgW+RIeYExOgmQAAmQAAmQAAmQAAmQAAn0kgDFk16Cc3GZR8WTKYvuajfc0V3vdzt8d/0vVTTJs+J+iOqueNKSetPTtJuhIJ6UN5XhD3m/xT8K/oQrjaUS9fGBsfhO0kP42uQ74Kfx64eduHYIVfE5aDMzoNv8ObQ5WVBfKAasVmdHpVISRswthq6LlsAaM2FA5slBSYAESIAESIAESIAESIAESKA3BCie9Iaa62s8Jp4IIaSjWNLZv7VMyVV/bxdP+iKA9OVa17dE73sYbU34z/F/4He5r6Gw6oTkYxKsDzCo2Z0AABQKSURBVMXX4m/DfcmPYJTfmN4H78WVyspKydBVt3E9tAcPQF1UBEVbQ9fQUFgmT4VpwSKYVqyCJT6Bhq694MxLSIAESIAESIAESIAESIAEBg8Biify7AXFExm4ujp50lfxYzB5ntgdduy9sAuvHnwWBy/vg81hg16lx7Lxq/BgyveRHJEmA+FrQ7YYuuq2boRWGLqePAFlfRtD14AAWCc2G7quWgvLtGQ4dPp+mRsHIQESIAESIAESIAESIAESIIH+IkDxRB7SAyaedLactqdRhvLJE7E2V9V2Olt/T9J3BrraTkFFPt44+Dy2nN2AJmsjlAolUiNnSj4mi8Yth1qplueOFVWAhaHrkcPQ7toO3e6d0BQIQ9dKAA5pTEeLoeuMZkPXdBq6yrYZDEwCJEACJEACJEACJEACJDCoCFA8kWc7Bo140jGNZ6iLJ/Js18BGLWssxTu5r+Ofxz6A8DQRLSZwAu6b/ghujvumPD4mdjs0J09Au283dNu6MHQdMw7m1DQp9ca0YDHsYeEDC4qjkwAJkAAJkAAJkAAJkAAJkMAAEaB4Ig94t8STjsaubafS4nPiysOkq+m3xO7olzJcxZOOJ1Y6cuvJ6RRP3DKN1gb8+8Tf8PtDr+N09SkpZIghDF+P/xbuSXrQ4z4mqvNnoT0oDF03QptzEKoLxVC0GLqqVLBFRDoNXRcvg2nJMqlkMBsJkAAJkAAJkAAJkAAJkAAJkICTAMUTee4Et8QTd4bujXjSnaHscBVP3GEtdx/hW7KneAdeOfgsckoynD4magOWj18t+ZgkjUjxyBTaGbpmHoD6TFeGrothWnEdDV09Qp1BSIAESIAESIAESIAESIAEvJkAxRN5drdfxZO2Ykl3wolYKsWTXmy42Qxotb240HlJflku3sh6HtvOboKonKNSqJw+JmlOHxPx/3vbFA310B7KgW7bZmj37YH65HEo6+tbw9kDAmGdOAnmOfNgXH0DLEnJcGh1vR2O15EACZAACZAACZAACZAACZDAsCRA8USebfeYeCKm1zG9p7vSxV2lArVcQ/HE/Q1XNDTA58P30XD/Q+5f1NyztOEyfnfoNXx0/ENUGiukf40NmojvTn8MN026Fb4avx7HbDF01e3aDu0XO6E5JgxdnbFFazV0nTkbxlXXw0xD1x4z5gUkQAIkQAIkQAIkQAIkQAIk0BkBiify3BceFU88OcXhIJ4oAKjVSmhUSiiVgEIB2O2A3eGA1Sb+2OFwFpDpsqnOFCHknttR+ae/wzYuyq0taLDU4x/HPsB7eW/iTM1p6ZpQQzi+MflO3Jv0PUT4jnQrjtRJGLqeOC6dJtHt2ALN4TyoSi6jZeIOjQa2seNgnp4K08o1MC1YRENX9+myJwmQAAmQAAmQAAmQAAmQAAn0iADFkx7hcrszxRO3UXmuo1IBGHRq6LSqVpGhs+hCNzGZ7WgyWZuL8LbvpduxFSH3fgu1T/43Gh54uNsJWu1W7Dq/Fa9lPYdDpQdhd9hhUBuwMuZ6PDD9cSSGJ7u1QMnQNTMDui0boM3JgvpCMdBi6KpUwRYZCcu0ZJiWLIdp8VIaurpFlZ1IgARIgARIgARIgARIgARIwDMEKJ54hmPHKBRP5OHaZVSNWgl/g7r19apGM06XNeBMeQMuVjViXIgPYsL9pD8Bemc/cRKlrtEKm735GIrDAf/nn5b+WFLSULZpl/PYSict70o2Xs96HjvObYHJZpR8S9JHzpZ8TBaMXdqtj4lk6JolKt98Dm1GV4auU2BasASmlauchq7iCA0bCZAACZAACZAACZAACZAACZDAgBCgeCIPdoon8nDtNGpb4aTBZMWf9p1F1rmqLmewJH4Ebk0bC61aKZ08qWu0wFZdI502EadOhDls6Z4s2GIntItxqf4C3sp5BR+f+DuqTZXSaxOC46QTJjdMvKVTHxPJ0DUnG7rtW5oNXU9AWV/XGtceEADrxDgauvbj/cKhSIAESIAESIAESIAESIAESKCnBCie9JSYe/0pnrjHqc+9VEoFAnw00gGR/As1eHdvEWqNVpdxw/11eGBhLKLDfOE4cgTar94M4XMiWu3PfoH6Hzwp/b3OXIu/F/wJfzz8Ns7VnpH+LcwwAt+cchfuTry/nY+JZOianwfd7p3Q7toBzbEjEKdMWlqroWv6LBjX3gBz+iw4/HpuHOtycexAAiRAAiRAAiRAAiRAAiRAAiTgUQIUTzyKszUYxRN5uF4TNchXA6VSgWOXa/H85hM9GlWtVOA51WlEPvQdoKlJutYan4BLO/Zg+8XteO3gczh8JQd2CB8TH1wXfT0eSH0cU8OS2hm6asWpkvyuDF3TpNQb08IlsIeG9Wh+7EwCJEACJEACJEACJEACJEACJDA4CFA8kWcfKJ7Iw7VdVL1WCR+dGiarHT/592HUNFncHlVht+Ob/3kTa7f8pfUah0qFh34xG+/iIMx2k+RbMmPUXDyc+kMsscdCl50F3abPoT3kwtB1yTJYx8e4PRd2JAESIAESIAESIAESIAESIAESGNwEKJ7Isz8UT+Th2i5qsL8Wws71vb1nsLew3O0R/epr8Njv/xtTjme1u+Y384CfLlNglnYifqZagflHauF7MAvqM6ehMJmcfRUK2ELDYJ0sDF0XwXTdGljiJtPQ1W367EgCJEACJEACJEACJEACJEACQ48AxRN59oziiTxcW6OqVU6vE7PNjgc+yHZ7tKjzJ/DDN59AWFVZu2tqDUpcTopB7NESqOvqW1+zBwTCOnESzHPmw7jmBqlcsEOrdXs8diQBEiABEiABEiABEiABEiABEhj6BCieyLOHFE/k4doaVadVwVenwqnSOjyz8bhbo807sBHf+eBpaK1dGMqOGAHr6DEwJ6WiadUamGfOoaGrW2TZiQRIgARIgARIgARIgARIgAS8mwDFE3n2l+KJPFxboxq0Khh0Kuw4XooPD5zvdjRTdSm+9s/n8Y3sL7vtZ7v166h57hUY/QJlnj3DkwAJkAAJkAAJkAAJkAAJkAAJDCUCFE/k2S2KJ/JwbY3qo1NBr1VhXe4lrMu92O1o9sPbcWPWF5h9/jTGX3aWI+6qOUJCUf3r59D0tW/KvAKGJwESIAESIAESIAESIAESIAESGCoEKJ7Is1MUT+Th2hpVCCdCQMk5X4U3dhS6PZpvQy0Sj2UisSATiccOIqyypNNrjStWofrVt2APH+F2bHYkARIgARIgARIgARIgARIgARLwTgIUT+TZV4on8nBtjapRK+FvUKO83owf/yuv16ONLDmHaccP4va6k1Dv/gKorW2N5QgMQs0vf4PG2+7sdXxeSAIkQAIkQAIkQAIkQAIkQAIkMPQJUDyRZw8pnsjDtTWqQgEE+zmr3jz81xw0mm29HnFMsAFP3TgVdqsVjbu+hO6LHdDt2g5tThZgtcI8byEq3/wD7KNG93oMXkgCJEACJEACJEACJEACJEACJDB0CVA8kWfvKJ7Iw7VdVD+DGlq1EpuOlOCfWcW9HvGhxROQGhWMJpMNTW1EGEV9PXR7djmFlIMZaLz922i457uAUG7YSIAESIAESIAESIAESIAESIAEhg0BiifybDXFE3m4touqVABBzadPXt1+6v+1dze9dhNnAIDn3puofFWqqBAsKCyKUL+U7NplkQCJfTdVFxFbFv0r3bLlD1TqjgVC4ic0USuVBRIiKmpVQFkkBMLNCfINBse1PTP2Gdvn+DkSErlnPB/PO/Y5fs/YDtdv3spu9bVfPhv+9LsXwoMQwq3b98KD6n96Xmc3Pwknd26H81/8KrsdGxAgQIAAAQIECBAgQIDA4QpInpSJneRJGdf/q7V6XHH12OJqxchf3vswfPS/O8ktX33+J+HPr74UTk9Owpdf3w9fTbj0J7lRBQkQIECAAAECBAgQIEDg4AQkT8qETPKkjGtnrdWNY6sbyO52D8K7//hP+Nvf/x3u7/qXkPzo0mn4429fCL9/+ZmL+u6d78Ltu+cz9lhTBAgQIECAAAECBAgQIHBIApInZaIleVLGtbfWHz9xOVw+e3gvkk+++DK8/6//ho8/uxNufnH34m/VJT4v/vTJ8PNnngpv/Oa58PSTD282K3Eyc6A0R4AAAQIECBAgQIAAgQMUkDwpEzTJkzKug7U+8dil8Njl00fKfH2+C5/euht+9vTj4dLpo++1bxC7QJc1SYAAAQIECBAgQIAAAQIHICB5UiZIkidlXKO1np6eXNwD5dLZSTirlps0Xycn4f79XfjmfBe+urcLu6G7w0ZbUoAAAQIECBAgQIAAAQIEtiIgeVIm0pInZVyza62SKWdV0mS3u3iSzsDDdLLrtgEBAgQIECBAgAABAgQIbENA8qRMnCVPyriqlQABAgQIECBAgAABAgQIzC4geVKGXPKkjKtaCRAgQIAAAQIECBAgQIDA7AJbTJ78+pU3wz8/eKeoteRJUV6VEyBAgAABAgQIECBAgACB+QS2lDypkib1S/JkvjmmpZbA6394K7z317e5dAiUtmnWX7otASZAgAABAgQIECBA4HgEtpQ8qaNm5cl3En0nj04qy+7gpXxL1VtW49Hac8aQU7ZrDFO3n9NFWwQIECBAgAABAgQILCsgeVLG/yAu25E8KRP8WK2lTtpL1Rsbzz7fzxlDTlnJk31GSV0ECBAgQIAAAQIEtiewVPLkxo0b4erVq9ng169fD1euXAnXrl3L3rbewMqT7yRSkydVueareclJu46uf8e2revvu5Rlyfbr8TT70O7nUP+qsbffr/7WNuwz6tq+y2mojVj/2ntSzHtqX5vbj7UZO96hy3ZynUYfgWxIgAABAgQIECBAgMDBCSyRPKkSINV/Y19V0qWZeGney6RdZ9e9TSRPMpInXQmW2AlofXKfsm07kdB1It+VrOhrY6hvdSKiuW1K+13Jjpwx5vS/q4+p90eJede2Qys2ct/L8Z4a27E2fX2M9X3sAcp2BAgQIECAAAECBAgcn8ASyZOlFSVPGsmTvmCkJgeaJ7SxVShjTn5TEgLN1SFDq2JKtB/rX4n3+2IWa0vy5OEqoK65PZQ0WvqApX0CBAgQIECAAAECBJYXkDwpE4Ose560l87EHgU0VL5vGU5d56ef3/1+xH0njLFf5PuSJF1/7+IdSsy0y6ckBIaSJ6Xbj/Uv5f2hPtYJn7rM0CqUWFspyZOh9roulanKt1fytMczdDlWbFXOmPjFLukZWrWU4lzmkKFWAgQIECBAgAABAgTWLLCl5ElXXiGWpxgbu+TkSdcymKGlMbHysWU1cydPck/29508Kd1+LGEx5v2hSTflsprU5Emz/Vgira9syo4z1Sa2fdd4U8djJUpKBJUhQIAAAQIECBAgsB2BLSVP5ozqppInFezUE9m+4IypdyhJkHryPKWOoTbqVRE5l0WlJiimWKX4x+qPvR9LjOXapLY35lIdyZM5D5faIkCAAAECBAgQILB+AcmTMjEqljzp6m5ztUlseU3uypM6MdJst+9pLylPgYndk6RrfO3LMOZsP+UEPda/5vtV32OXN+U8iacrIVH/re9ymthqnKFY54y1qid2s9spNu25OXT5UOw+J7FxlTlMqJUAAQIECBAgQIAAgUMRkDwpE6nZkiexy3Sq4TXLNJMnZYauVgIECBAgQIAAAQIECBAgcFwCkidl4nmRPEl5hnLsHiZ93avrTrlpi+RJmSCrlQABAgQIECBAgAABAgS2ISB5UibORVeepKw2aQ5L8qRMkNVKgAABAgQIECBAgAABAtsQkDwpE+e9Jk/a9zQZWm0ydiVLGQa1EiBAgAABAgQIECBAgAABAgS6BZKTJ9Xm7ct72smR2A1hqzqa28TqEzQCBAgQIECAAAECBAgQIECAwNICWcmTpTurfQIECBAgQIAAAQIECBAgQIDA3AKSJ3OLa48AAQIECBAgQIAAAQIECBA4KAHJk4MK13F0duzlWrk3ID4OLaM4VoHc/WCofN8T01KecnasvsZ1PAK5+8rxjNxItiiQO999Nmxxlhhz7n5SizmXMHemCkieTBW0fZbAmBsFNw+QTgazuBVeqUDufhAr78vASgOtW5MFYnN/cgMqILAigdz5Hivvs2FFwdWVvQnE5n1XQ84l9sa/+YokTzY/BeYFGHPAky2eN0ZaKy+Qux/EyvuCXD5mWlhGIDb3l+mVVgmUEcid77HyPhvKxEmtywrE5v1Q7+wTy8buGFqXPDmGKB7QGBzwDihYulpMIHc/iJXvumzHKq1i4VPxjAKxuT9jVzRFoLhA7nyPlffZUDxkGlhAIDbvJU8WCMqGmpQ82VCw1zBUB7w1REEflhbI3Q9yy1fj8+vK0lHW/j4Exsz9fbSrDgJLCOTO99zyPhuWiKo29y0wZt7XffDdaN/R2F59kifbi3mxEXf9wlE3Vv8K7oBXjF/FKxEosR+M2W98QVjJhNCNSQJj5v6kBm1MYEGB3PmeW17yZMHganpvAmPmveTJ3vg3X5HkyeanwLwADnjzemttnQK5+0FueV+Q1xl3vcoXGDP381uxBYF1COTO99zyPhvWEWe9mCYwZt5Lnkwzt/UPApInZsOsAikHvL5fzP2SPmuoNFZQIHc/iJWPvV9wKKomUFTA3C7Kq/KVCaTM92aZWPnY+ysbvu4QSBJImdfOJZIoFRohIHkyAs0m0wTalzW0b2zZPuB1XQbhZpjTYmDr5QWm7gdd+01zVPaR5WOsB/sRiO0r+2lFLQTWIRCb77HvSD4b1hFHvSgrMHU/qXrne1LZGB1r7ZInxxpZ4yJAgAABAgQIECBAgAABAgT2IiB5shdGlRAgQIAAAQIECBAgQIAAAQLHKvAt5C30S+lNJtAAAAAASUVORK5CYII=", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "analyzer.plot_metabolic_network(metabolite_ids=[\"o2_c\"])" ] }, { "cell_type": "markdown", "id": "828b5663-4630-43ff-968b-2ad5822cb1bf", "metadata": {}, "source": [ "-\n", "These parameters can be used in combination." ] }, { "cell_type": "code", "execution_count": 27, "id": "2da73ec0-b354-4771-96e8-d29a64614c2e", "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "hoverinfo": "none", "line": { "color": "red", "width": 1 }, "mode": "lines", "type": "scatter", "x": [ 0.33733832524271096, 0.23733832524271095, null, 0.33733832524271096, 0.437338325242711, null, -0.3052186804242459, -0.20521868042424588, null, -0.3052186804242459, -0.4052186804242459, null, -0.3052186804242459, -0.20521868042424588, null ], "y": [ -0.030790677418553982, 0.06920932258144602, null, -0.030790677418553982, -0.130790677418554, null, 0.034633705889680594, 0.1346337058896806, null, 0.034633705889680594, -0.06536629411031941, null, 0.034633705889680594, -0.06536629411031941, null ] }, { "hoverinfo": "none", "line": { "color": "green", "width": 1 }, "mode": "lines", "type": "scatter", "x": [ 0.437338325242711, -0.3052186804242459, null, 0.36625464569200394, 0.33733832524271096, null, 0.35331964524115744, 0.33733832524271096, null, -0.32371312086070647, -0.3052186804242459, null ], "y": [ -0.130790677418554, 0.034633705889680594, null, 0.01813498106411988, -0.030790677418553982, null, -0.08536354010412753, -0.030790677418553982, null, -0.018537728390905676, 0.034633705889680594, null ] }, { "hoverinfo": "text", "hovertext": [ "TALA
g3p_c + s7p_c <=> e4p_c + f6p_c", "e4p_c
D-Erythrose 4-phosphate
C4H7O7P", "f6p_c
D-Fructose 6-phosphate
C6H11O9P", "g3p_c
Glyceraldehyde 3-phosphate
C3H5O6P", "s7p_c
Sedoheptulose 7-phosphate
C7H13O10P", "PFK
atp_c + f6p_c --> adp_c + fdp_c + h_c", "adp_c
ADP C10H12N5O10P2
C10H12N5O10P2", "atp_c
ATP C10H12N5O13P3
C10H12N5O13P3", "fdp_c
D-Fructose 1,6-bisphosphate
C6H10O12P2", "h_c
H+
H" ], "marker": { "color": [ "#00008B", "#1f77b4", "#1f77b4", "#1f77b4", "#1f77b4", "#00008B", "#1f77b4", "#1f77b4", "#1f77b4", "#1f77b4" ], "colorbar": { "thickness": 15, "title": { "side": "right", "text": "Node Connections" }, "xanchor": "left" }, "line": { "width": 2 }, "size": [ 30, 20, 20, 20, 20, 30, 20, 20, 20, 20 ] }, "mode": "markers+text", "text": [ "TALA", "e4p_c", "f6p_c", "g3p_c", "s7p_c", "PFK", "adp_c", "atp_c", "fdp_c", "h_c" ], "textposition": "top center", "type": "scatter", "x": [ 0.33733832524271096, 0.23733832524271095, 0.437338325242711, 0.36625464569200394, 0.35331964524115744, -0.3052186804242459, -0.20521868042424588, -0.32371312086070647, -0.4052186804242459, -0.20521868042424588 ], "y": [ -0.030790677418553982, 0.06920932258144602, -0.130790677418554, 0.01813498106411988, -0.08536354010412753, 0.034633705889680594, 0.1346337058896806, -0.018537728390905676, -0.06536629411031941, -0.06536629411031941 ] } ], "layout": { "annotations": [ { "showarrow": false, "text": "Hover over nodes to see details", "x": 0.005, "xref": "paper", "y": -0.002, "yref": "paper" }, { "arrowcolor": "red", "arrowhead": 3, "arrowsize": 2, "arrowwidth": 1.5, "ax": 0.33733832524271096, "axref": "x", "ay": -0.030790677418553982, "ayref": "y", "showarrow": true, "x": 0.23733832524271095, "xref": "x", "y": 0.06920932258144602, "yref": "y" }, { "arrowcolor": "red", "arrowhead": 3, "arrowsize": 2, "arrowwidth": 1.5, "ax": 0.33733832524271096, "axref": "x", "ay": -0.030790677418553982, "ayref": "y", "showarrow": true, "x": 0.437338325242711, "xref": "x", "y": -0.130790677418554, "yref": "y" }, { "arrowcolor": "green", "arrowhead": 3, "arrowsize": 2, "arrowwidth": 1.5, "ax": 0.437338325242711, "axref": "x", "ay": -0.130790677418554, "ayref": "y", "showarrow": true, "x": -0.3052186804242459, "xref": "x", "y": 0.034633705889680594, "yref": "y" }, { "arrowcolor": "green", "arrowhead": 3, "arrowsize": 2, "arrowwidth": 1.5, "ax": 0.36625464569200394, "axref": "x", "ay": 0.01813498106411988, "ayref": "y", "showarrow": true, "x": 0.33733832524271096, "xref": "x", "y": -0.030790677418553982, "yref": "y" }, { "arrowcolor": "green", "arrowhead": 3, "arrowsize": 2, "arrowwidth": 1.5, "ax": 0.35331964524115744, "axref": "x", "ay": -0.08536354010412753, "ayref": "y", "showarrow": true, "x": 0.33733832524271096, "xref": "x", "y": -0.030790677418553982, "yref": "y" }, { "arrowcolor": "red", "arrowhead": 3, "arrowsize": 2, "arrowwidth": 1.5, "ax": -0.3052186804242459, "axref": "x", "ay": 0.034633705889680594, "ayref": "y", "showarrow": true, "x": -0.20521868042424588, "xref": "x", "y": 0.1346337058896806, "yref": "y" }, { "arrowcolor": "red", "arrowhead": 3, "arrowsize": 2, "arrowwidth": 1.5, "ax": -0.3052186804242459, "axref": "x", "ay": 0.034633705889680594, "ayref": "y", "showarrow": true, "x": -0.4052186804242459, "xref": "x", "y": -0.06536629411031941, "yref": "y" }, { "arrowcolor": "red", "arrowhead": 3, "arrowsize": 2, "arrowwidth": 1.5, "ax": -0.3052186804242459, "axref": "x", "ay": 0.034633705889680594, "ayref": "y", "showarrow": true, "x": -0.20521868042424588, "xref": "x", "y": -0.06536629411031941, "yref": "y" }, { "arrowcolor": "green", "arrowhead": 3, "arrowsize": 2, "arrowwidth": 1.5, "ax": -0.32371312086070647, "axref": "x", "ay": -0.018537728390905676, "ayref": "y", "showarrow": true, "x": -0.3052186804242459, "xref": "x", "y": 0.034633705889680594, "yref": "y" } ], "autosize": true, "hovermode": "closest", "margin": { "b": 0, "l": 0, "r": 0, "t": 40 }, "showlegend": false, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "font": { "size": 16 }, "text": "
Metabolic Network - Reaction and Metabolites" }, "xaxis": { "autorange": true, "range": [ -0.4656965778640713, 0.4978162226825364 ], "showgrid": false, "type": "linear", "zeroline": false }, "yaxis": { "autorange": true, "range": [ -0.16031182626345783, 0.16415485473458444 ], "showgrid": false, "type": "linear", "zeroline": false } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAABE8AAAFoCAYAAACmM9U+AAAAAXNSR0IArs4c6QAAIABJREFUeF7s3Qd0HMXhBvDvmk7V6u623Hu3wb3JtmRcMJhObGNKjElIACf8IQFCTYCQmBQIJbSYaroL7r3j3ivuXafqk3Q6Xdn/2xUnS+cre2WlK9++52fQzc7O/GZP1n2anVEJgiCABwUoQAEKUIACFKAABShAAQpQgAIUoIBLARXDE94ZFKAABShAAQpQgAIUoAAFKEABClDAvQDDE94dFKAABShAAQpQgAIUoAAFKEABClDAgwDDE94eFKAABShAAQpQgAIUoAAFKEABClCA4QnvAQpQgAIUoAAFKEABClCAAhSgAAUo4J8AZ57458azKEABClCAAhSgAAUoQAEKUIACFIgSAYYnUTLQ7CYFKEABClCAAhSgAAUoQAEKUIAC/gkwPPHPjWdRgAIUoAAFKEABClCAAhSgAAUoECUCDE+iZKDZTQpQgAIUoAAFKEABClCAAhSgAAX8E2B44p8bz6IABShAAQpQgAIUoAAFKEABClAgSgQYnkTJQLObFKAABShAAQpQgAIUoAAFKEABCvgnwPDEPzeeRQEKUIACFKAABShAAQpQgAIUoECUCDA8iZKBZjcpQAEKUIACFKAABShAAQpQgAIU8E+A4Yl/bjyLAhSgAAUoQAEKUIACFKAABShAgSgRYHgSJQPNblKAAhSgAAUoQAEKUIACFKAABSjgnwDDE//ceBYFKEABClCAAhSgAAUoQAEKUIACUSLA8CRKBprdpAAFKEABClCAAhSgAAUoQAEKUMA/AYYn/rnxLApQgAIUoAAFKEABClCAAhSgAAWiRIDhSZQMNLtJAQpQgAIUoAAFKEABClCAAhSggH8CDE/8c+NZFKAABShAAQpQgAIUoAAFKEABCkSJAMOTKBlodpMCFKAABShAAQpQgAIUoAAFKEAB/wQYnvjnxrMoQAEKUIACFKAABShAAQpQgAIUiBIBhidRMtDsJgUoQAEKUIACFKAABShAAQpQgAL+CTA88c+NZ1GAAhSgAAUoQAEKUIACFKAABSgQJQIMT6JkoNlNClCAAhSgAAUoQAEKUIACFKAABfwTYHjinxvPogAFKEABClCAAhSgAAUoQAEKUCBKBBieRMlAs5sUoAAFKEABClCAAhSgAAUoQAEK+CfA8MQ/N55FAQpQgAIUoAAFKEABClCAAhSgQJQIMDyp54HuOmI6Dqz5KKitUKLOoDYwDCqjYRgMUh02MRLuByX6oESddTisvBQFKEABClCAAhSgAAVkC0R8eCL+cC8engIKOWXciQb64SHQ8121y1WdwbqOnHrklJHbbtl3cpAL+tsHf5vhuAedzw92sBZI+9y1pa6t/O1DIOfJ6aOc7yNyykTi9xo5foGMD8+lAAUoQAEKUIACFKCA0gIMTwBE6wcaf24uOVb+flDy9zx/+uHtnLpui7vr1XU7/PngHipt9Damgbwup49y3xvewlx/xkBO3+T0QU49NcvIDWqVuLavbWV5ClCAAhSgAAUoQAEKBCIQFeGJ+Btzbx9O/f3h3t/zHIMW6PmuBl+JOp3b6+ka/l7f3/MCeQMo9UHV1zYp4elrGzyVD6WxCWa/5NYlp/+OMvxec62qHD+5Y8FyFKAABShAAQpQgAIUqA8Bhic/rzni7jeoNQfF+bEFx2+aAylT8wOXp3pqhhfeysn9bbBYj3MfvD0mUrNubx8Sa7bT23U8Wcrtj79j6AjXHO2VE7YF+83qT3jizdTdPSN+3dU4u6vP233u6T7w9t5wtnfXNm/BjvPrNfsXjPeYnA//gYQn3sbS2xi4ei87WwbDwdlZznvTn7bLuT/9uVeC/b5lfRSgAAUoQAEKUIAC0SMQNeGJ48OFqw9V3l6r+SHUVYDi61oQzgGEqw8Bcj6UuGq3El9zDkEc/ZUbngTSl0D6I+e6jg92csZVzgdof791+BqeyOmbOzt/7ncl2ueLvTtXOfegL9fxFMAFEiw6v+fdfR+Kpu81vvRVzjj7+97jeRSgAAUoQAEKUIACFJAjwPDk551uPH24cRceePpw6gnfn2v58uFVzgdrf4MA5/O8XSvQdrv6gOXqN/xy2uWpLufx8qU+OW80b2V8+XDoi6mc0EHOveDLNeWWlVvOm52r15V+j/l6TXft8cVAzjh5uo/lXktuuUCCTU/BiS/vU3/uDZ5DAQpQgAIUoAAFKEABfwSiKjyp+cO+pw/HgX54cA5bXA2Mt9kbzh9MAm1TsMIAb2FJsNsdCuGJrx9axfLOh5xZC57uE+d7ypfZTq7aI9Yn5x709UOuuw/Uvn4g9sU8kP75E7K4+0br7j0W7d9rPN0Tcr+v+XI/+PMPIc+hAAUoQAEKUIACFKCANwGGJz8LOX+I8gTnbcq9tw+c/nxgk/shw90HFSXDE0+BibsPtg4jfywdffHkKNfLXTlX1/D2ZgrkdTmhVM37KtD7U+496O1ednW/BWrvLYCREyTJ7Z8/5YIdngQ6lnLDCSXGRe596+l95kv/nct6CyUDeU/yXApQgAIUoAAFKEABCtQUiLrwRE644MtvOb19+HZ1u/nzgU3uBx85/fPlw6lz++W0Q27/Aq27Zj98CYfktM8R+nhaPDaY30p8uY/k3p9yxkruvSC3Lm/1ybH3VoevgY7ctsstJzc8kfNelDuWcgMST+8puf2TW05O/7yNlS/99/a9NJjvR9ZFAQpQgAIUoAAFKEABZwGGJz+LyP1QJ/cDv9wPIMEuJ/cDjb8fWuS0N9iWckISJcITubNigvFtRY6rtw+icu9N53tEzr0QrPbJvTeC2Sa5bZdbjuHJR9UErszkfk1uSObp/SXnPgnG+5N1UIACFKAABShAAQpQICrDE1fDLvfDt9xynkIM8bWa603U/H9PH5DlfigJdrmaXt4+rIivO/fH3Tm+WHr6oCW3fld1BHJuML99yHGVE+bIMZU7RoEEHXLuwUDDCl/eY3LXiHHXblfvUV/CKk/vIbn3oK9ezuPsatw9Gfq7A5WcsZfzPUXO/eftfRPM9yjrogAFKEABClCAAhSIboGQDU8uFJiCMjJjbnkIy795y2tdrsqJX3M+XNVVs5zz6851iK/XvJbjv12Vc9VoOeXc9cVb28XrebOS46mkpbs+uGu3Ny93/fH1615vMC8F/HH15/50jLGcMfJ0L9d8zZNVzW67qs/TuHm7Fx11y32PuXs/+fqedTeUcsZQPFeOvbv3YqR8r/Fm7qr/cu/3QN+LPJ8CFKAABShAAQqEu0DT9Lhw70JItj/iw5OQVGejKEABnwTkBhM+VcrCFKAABShAAQpQgAIUiEABhifKDCrDE2VcWSsFKBBEAYYnQcRkVRSgAAUoQAEKUIACES3A8ESZ4WV4oowra6UABYIowPAkiJisigIUoAAFKEABClAgogUYnigzvAxPlHFlrRSggAcBOWvROJ/uWCfD1TpBctdHcdTpae0QDhwFKEABClCAAhSgAAXCWYDhiTKjx/BEGVfWSgEK+CDgahHlmqc7vy6+JmfRWldNcJ7FwlktPgwUi1KAAhSgAAUoQAEKhLxAJIYnobDLIsOTkL/12UAKRL6Ar+GJLzv3OOsxLIn8+4k9pAAFKEABClCAAtEsEGnhiRiciMeBNR/V67AyPKlXfl6cAtEp4GnbWW9bbXt73ZsowxNvQnydAhSgAAUoQAEKUCCcBSIpPHHMOOHMEw935IUCUzjfr2w7BSjgRsBb+BHo697gGZ54E+LrFKAABShAAQpQgALhLBAp4UnNwCTswhPHdBnHjSR32oyrjjrX5Vwnw5Nwfruy7RRwL+BrOOKYpeK8YGzNK/gSiHDNE96dFKAABShAAQpQgAKRLFAf4cmePXsg/vH36NmzJ8Q/jsM5Qwir8MRdAOIpQKkZkDiX89Z5hif+3nY8jwKhL+DpsR2x9c674bhaMLZmL7nbTuiPOVtIAQpQgAIUoAAFKFA3AvURnsyZM0cKT2oGIHJ7u3fvXvTo0QPTpk2rFZ64O1/uJA6515dbTvaaJ/6EJ+5SI/HrDE/kDhHLUYACNQV8mWVCOQpQgAIUoAAFKEABCkSbQH2FJ6JzzQBErvvHH38MQRA8nustP5B7rUDK1Wt44tzwmgkSZ54EMqw8lwKRK+ApPHE1o6WmhK8zVCJXkT2jAAUoQAEKUIACFIhUAYYnyoxsvYUnrrpTM01ieKLMgLNWClCAAhSgAAUoQAEKUIACFIhcAYYnyowtwxNlXFkrBShAAQpQgAIUoAAFKEABClCgzgUiMTypc0QXF2R4EgqjwDZQgAIUoAAFKEABClCAAhSgAAWCIMDwJAiISocn7hZxkbvYLB/bUWaQWSsFIklAo1ZBpQIEAbALgvQ3DwpQgAIUoAAFKEABClCgSoDhiTJ3guyZJ+Lla249LP6/t+2Hncs7n+OpPq55osyAs1YKhJuACkBsjAY6rRpajfh/tQ+7HbDY7Kiw2GCzMUkJt/FleylAAQpQgAIUoAAFgivA8CS4no7afApPlGmC61oZntSlNq9FgdAU0OvUSIjV1mqc1S7gXFE5GjWIRZxOU+s1s8WGsgpbaHaGraIABShAAQpQgAIUoEAdCDA8UQaZ4YkyrqyVAhQIUEAMTcTwRDxKTBYs3ncRxw2lOF1QDjFAEY/GDWLRNjMRwzpkoH2jJOlrNruAK+VWaa94HhSgAAUoQAEKUIACFIg2AYYnyow4wxNlXFkrBSgQgEC8XiM9qiMe204V4n+bT6PcbHVbo7gGSk7XxrilT3No1SoGKAHY81QKUIACFKAABShAgfAWYHiizPgxPFHGlbVSgAJ+CsTo1Ej8+VGdDzacxIaf8mXX1DQ5Dr8f2xEpcTpUWu0oNbkPXGRXyoIUoAAFKEABClCAAhQIIwGGJ8oMFsMTZVxZKwUo4IeAuBxscqIOapUK648Z8OHGUz7X0r15Mh4b3UE6T3x8x2qz+1wHT6AABShAAQpQgAIUoEC4CjA8UWbkGJ4o48paKUABPwTiYjSI02uQX1qJZ77fB7PVv+Dj3sGtMLR9pvT4TkmZxY+W8BQKUIACFKAABShAAQqEpwDDE2XGjeGJMq6slQIU8EMgOUEHjVqFr3ackxaI9fdokhyLP9/cXTpdDE/EEIUHBShAAQpQgAIUoAAFokGA4Ykyo8zwRBlX1koBCvgooFYBKYkx0lkvLjyIk/llPtZQu/i/7uqNRL0W5WYbKiq5fXFAmDyZAhSgAAUoQAEKUCBsBBieKDNUDE+UcWWtFKCAjwIxWjUS47SosNrx6093INCdhmcOb4vrW6ehwmJDeQXDEx+Hg8UpQAEKUIACFKAABcJUgOGJMgPH8EQZV9ZKAQr4KOAIT/ZfKMHsZUfdny0ISDuyH4Wdqh7LcXdkd2qIKQOyYLbYUVbBXXd8HA4WpwAFKEABClCAAhQIUwGGJ8oMHMMTZVxZKwUo4KOATqNCUrwOpwrK8MKCg7XOTii7gp4HtlT92bMBn49/AGvH3O7xChN7NsXNvZsxPPFxHFicAhSgAAUoQAEKUCC8BRieKDN+DE+UcWWtFKCAjwJajQoN4nWw2gXM/N9WtD51GD0PbEav/ZvR9tQhqISqnXfMMbGYMXsJLDq9xys8nN0OfVqmwlRph8nMmSc+DgeLU4ACFKAABShAAQqEqQDDE2UGjuGJMq6slQIU8FFAXZCP9E2roV62FBULFyPBWOSyhjWDJ+DdaU95rf2vt/ZERmIMjCYrLH5ueez1IixAAQpQgAIUoAAFKECBEBNgeKLMgDA8UcaVtVKAAt4E7Hbodm5H7MpliF2xFLo9uwB71ewST8dzj7+Do+16eCzTvXkyHhvdQSpTaKz0ViVfpwAFKEABClCAAhSgQMQIMDxRZigZnijjylopQAEXAup8A/RiWLJyGfSrV0JdVOiTkyG9CR75y7cez0nQa/Hnm7qjgbhzj8WOci4W65MxC1OAAhSgAAUoQAEKhLcAwxNlxo/hiTKurJUCFHASUJUUQ79lE1RlZVCVl0FlMl39u6wUavHrJhN0ZhPUpUao160FrLXXKvni5ocwf+w0j7YzhrXFgDZp0lbHxWWVAW95zIGkAAUoQAEKUIACFKBAOAkwPFFmtBieKOPKWilAAT8F1FeK0XDyOKh3776mhl+/Mh9FqZkua46P0WBK/ywMaJsOqFS4UlYJq03wsxU8jQIUoAAFKEABClCAAuEpwPBEmXFjeKKMK2ulAAX8EFBfuojMnGFQXzgPy3/eRsyvZlbXsqfrALz629dd1tq1aQPcP6QNUuJ10utlFVZpi2IeFKAABShAAQpQgAIUiDYBhifKjDjDE2VcWSsFKOCjgObMaWSOGgxVcRGK3vkIlrHj0Kjl1VkmZXM+xaGhY3HCUCb9aZKsR9vMRGRlJCIzMab6aqUmKyq5u46P+ixOAQpQgAIUoAAFKBApAgxPlBlJhifKuLJWClDABwHtwf3IuCEbKlM5Cud+D/PI0VDnXUbjLq2raklJQcW5i4CuamaJq0MMTExmG2x2PqrjAz2LUoACFKAABShAAQpEmADDE2UGlOGJMq6slQIUkCkgblecMX40AAH53y+Bpf9A6UzN6VNo1LeL9N/l9z+I0r/9AzqNGmq1SvojCIIUlNhsAiw2OxeGlenNYhSgAAUoQAEKUIACkS3A8ESZ8WV4oowra6UABWQI6FevQNqdN0PQ65G/ZA2sXbpVn6U9fBANh/ST/t+wYgMsvfrIqJFFKEABClCAAhSgAAUoEN0CDE+UGX+GJ8q4slYKUMCLQOzCeUi9924IDZJhWL0ZtpZZtc7Q7dqBzDFDYW3XAXlbrt15h8AUoAAFKEABClCAAhSgwLUCDE+UuSsYnijjylopQAEPAvFzPkDyrIdhb9xEmlUi/u18xGxcj4xJuSh58VWUPfQbelKAAhSgAAUoQAEKUIACMgQYnshA8qMIwxM/0HgKBSjgv0DS7FeR9JfnYWnXHvlL10JITnFZmX75EqRPuwOX9v0Ee8bVXXf8vzLPpAAFKEABClCAAhSgQOQLMDxRZowZnijjylopQAFnAUFA8pOzkPD+O6js2Qf5C5cDcXFunWLnf4f4r79A4Zy5tKQABShAAQpQgAIUoAAFZAowPJEJ5WMxhic+grE4BSjgh4DdjtQHpiFu/reoyB6Dwk+/9rjtsHiFuLmfSrNSKsaO9+OCPIUCFKAABShAAQpQgALRKcDwRJlxZ3iijCtrpQAFHAJmM9LumozYdatRfssdKH77A0Cl8uojzjypmDAJUKu9lmUBClCAAhSgAAUoQAEKUKBKgOGJMncCwxNlXFkrBSgAQFVWhvTxoxCzfy+Mjz4O49PPy3cxmTw+1iO/IpakAAUoQAEKUIACFKBA9AgwPFFmrBmeKOPKWikQ9QKqwgJk5o6A5uRxlLwyG+UPzIx6EwJQgAIUoAAFKEABClBAaQGGJ8oIMzxRxpW1UiCqBdSXLiIzexDUeZdR9O7/UDH5tqj2YOcpQAEKUIACFKAABShQVwIMT5SRZniijCtrpUDUCmhOHEfmmKFQGa+g8OMvYc4dF7UW7DgFKEABClCAAhSgAAXqWoDhiTLiDE+UcWWtFIhKAe3B/cjIHQ6VxYL8eUth6T8wKh3YaQpQgAIUoAAFKEABCtSXAMMTZeQZnijjylopEHUCuh83I+OmsYBGA8OydbB26RZ1BuwwBShAAQpQgAIUoAAF6luA4YkyI8DwRBlX1kqBqBLQL12EtKm3Q0hMgmHFBtjatI2q/rOzFKAABShAAQpQgAIUCBUBhifKjATDE2VcWSsFokYg9tuvkDrjHtgbNYZh5UbYGzeJmr6zoxSgAAUoQAEKUIACFAg1AYYnyowIwxNlXFkrBaJCIP69t5H85CzYslrBsGoThOSUqOg3O0kBClCAAhSgAAUoQIFQFWB4oszIMDxRxpW1UiDiBZJefgFJf38FlT16oWDBcggJCRHfZ3aQAhSgAAUoQAEKUIACoS7A8ESZEQpqeNJ1xPRarTyw5iNZrRbPcy57ocAk61wWogAF6lhAEJA862EkfPwhzIOHoeDrBYBOV8eN4OUoQAEKUIACFKAABShAAVcCDE+UuS+CFp64CkBcfa1mN2qGLQxPlBlg1kqBoApYrUidejvili9B+c23ovidjwC1OqiXYGUUoAAFKEABClCAAhSggP8CDE/8t/N0Zr2GJ46GceaJMoPLWikQVAGTCem3TIB+62YYfzsLxj+9FNTqWRkFKEABClCAAhSgAAUoELgAw5PADV3VwPBEGVfWSoGIElCVGpGRMxy6o4dR/MpslD8wM6L6x85QgAIUoAAFKEABClAgUgQYnigzkgxPlHFlrRSIGAG1IQ8ZOcOgOXsGxW+8C9OdUyKmb+wIBShAAQpQgAIUoAAFIk2A4YkyI8rwRBlX1kqBiBBQnz+HzJEDoS4qROEnX8GcOy4i+sVOUIACFKAABShAAQpQIFIFGJ4oM7IMT5RxZa0UCHsB7bEjyBgzDCpTOfLnL4Ol/8Cw7xM7QAEKUIACFKAABShAgUgXiJTwxN/dfJUa3zoNT9ztvsMFY5UaXtZLAf8EtHt3I3PsSEClgmHxKlh79PKvIp5FAQpQgAIUoAAFKEABCtSpQCSEJ/7s5qs0ctDCE7Gh3pIhZwDn8mIdji2LLxSYlO4766cABVwIxGxYi/RbJ0KIjYVh1WbY2rSlEwUoQAEKUIAC9SAw5paHsPybt+rhyrwkBSgQzgKREJ648nc3GaOuxiqo4UkwG83wJJiarIsC8gT0SxchbcptsKelw7BqE+zNmss7kaUoQAEKUIACFAiqgBiciAfDk6CysjIKRIUAwxNlhpnhiTKurJUCYScQ98UnSHl4Bmwts2BYsQFCWnrY9YENpgAFKEABCoS6gCMUcbTTVTjimHHiPPOk5tc9ne/JoOb1GcyE+t3C9lHAP4FICk9qPq3ieErFP5XAz2J4Ergha6BA2Ask/vt1NHj+KVg6dUH+0rUQEhLCvk/sAAUoQAEKUCDUBFw9huMuIBHb7uo18es1Qw9fHu3xdK1Qs2J7KEAB/wUiKTypqcDHdtzcE3xsx/83C8+kgC8CyU88hoT334F54BAUfL0A0Ot9OZ1lKUABClCAAhSQKeAtPPEWbng731szfAlavNXF1ylAgdAVYHiizNhw5okyrqyVAqEvYLcj5aH7EP/NlzDdOBlF780B1OrQbzdbSAEKUIACFAhTAedHdhzdcMwkcfe6WE4sw/AkTAeezaZAHQtEQngS8bvtBPOe4MyTYGqyLgo4CVgsSL/9RujXr0XZvb9EyWv/JBEFKEABClCAAgoL+Drzw9tMFLG5vtTpS1mFKVg9BSigoEAkhCcij7fdfBUkdFk1Z57UtTivR4F6FlCVlSH9xhzE7NkF4zMvwvjI7+q5Rbw8BShAAQpQIDoEfJ05onR4wjAlOu479jL6BCIlPAm1kWN4EmojwvZQQEEBVUkxMkcNgebUCRS/8S5Md05R8GqsmgIUoAAFKEABZwE5u+04znG3YGzNOn3dMYe77fCepEDkCzA8UWaMGZ4o48paKRByAupLF6XgRJ13CUUffoaKCZNCro1sEAUoQAEKUIAC7gU4U4R3BwUoIEeA4YkcJd/LMDzx3YxnUCDsBDRnTiNz5ECoSo0o+GYhKocMD7s+sMEUoAAFKECBaBfwFJ54WmxWdPN1hkq0W7P/FAhnAYYnyowewxNlXFkrBUJGQHtwPzLGjoDKaoVhyRpYe/QKmbaxIRSgAAUoQAEKUIACFKBAcAUYngTX01EbwxNlXFkrBUJCQLdzOzLGj4IQE4P8FRtgbd8xJNrFRlCAAhSgAAUoQAEKUIACyggwPFHGleGJMq6slQL1LqBfvQJpd9wEe2oqDKs2w96seb23iQ2gAAUoQAEKUIACFKAABZQVYHiijC/DE2VcWSsF6lUgduE8pN57N+xNmiFvzWYIaen12h5enAIUoAAFKEAB/wXUKhW0GhU04h+1CiqVCna7IP2x2uyw2gFBEPy/AM+kAAUiSoDhiTLDyfBEGVfWSoF6E4if8wGSZz0Ma8fOyF+6BkJiUr21hRemAAUoQAEKUMB/ATEoidNrEKNVe63EVGlHRaWNIYpXKRagQOQLMDxRZowZnijjylopUC8CSX9/BUkvv4DKvtchf/4yQK+vl3bwohSgAAUoQAEKBCYgBiaJcdrqSgxGM44bynAqvxSXr5jROjMBrTMS0DYzAfExVeVsdgGlJqv0Nw8KUCB6BRieKDP2DE+UcWWtFKhbAUFA8v89ioQP/4uKnBtQOGcuoL36A1fdNoZXowAFKEABClAgEAG9To2E2Kp/xwvLKvH+hhM4dNHoskq1Chjfoykm9WwKtVoFMTa5UmZhgBLIAPBcCoS5AMMTZQaQ4YkyrqyVAnUnYLcjddodiFvyA8qm3YeSv/8bUKnq7vq8EgUoQAEKUIACQRPQaVRIitdJ9W08no/PtpyByWLzWn9Wejx+ObQNmqbEwWoTYDRZwGVQvLKxAAUiUoDhiTLDyvBEGVfWSoG6ETCbkX7rROg3b4DxqedgfOz/6ua6vAoFKEABClCAAkEXEH/3kZIQI/0OZMNP+fhgw0mfrhEXo8FLN3VDanwMKq126REeHhSgQPQJMDxRZswZnijjylopoLiAqtSIjLEjoT18ECWz30D5tPsUvyYvQAEKUIACFKCAcgLiozriIzvFJgue+nafrBknzq3p3CQJj+d2kr58pdwizULhQQEKRJcAwxNlxpvhiTKurJUCigqoCguQmT0ImvPnUPThZ6iYMEnR67FyClCAAhSgAAWUF0hLipEu8tclh3H4kus1TuS04p5BrTC8QyZnn8jBYhkKRKAAwxNlBpXhiTKurJUCigmoz5+TghN1USEKvv0BlUOGK3YtVkwBClCAAhSgQN0I6LRqJMVpcbGkAk99ty+gizZLicOLN3WTFo8tMlYGVBc2hS4iAAAgAElEQVRPpgAFwk+A4YkyY8bwRBlX1koBRQQ0J44jM3sgVOZK5P+wApY+/RS5DiulAAUoQAEKUKBuBeL0Gohrlmw5UYh31x0P6OLiminvTOkLrUaNEu68E5AlT6ZAOAowPFFm1BieKOPKWikQdAHt3t3IvCEbgkaD/JUbYG3fMejXYIUUoAAFKEABCtSPgGO9k692nMPifRc9NkJltULQVm1l7O547sauaJkWD6PJCovVXj+d4lUpQIF6EWB4ogw7wxNlXFkrBYIqoPtxMzJuzIGQlIS8tVthb9Y8qPWzMgpQgAIUoAAF6lfAEZ58uOkk1h/N99iYQd9/hKQ4HXb2HQlDRlOXZR8b3QHdmydLWxZbrFw0tn5Hl1enQN0KMDxRxpvhiTKurDUMBMbc8tA1rVz+zVvVX3P1uviiWEZ8rWZZ8euuvhYMBv3SRUibchvsjZvAsGoT7JkNg1Et66AABShAAQpQIIQE4vVaxMaosfLQZXz64xmPLcs6exQvv3SPVOZio5bY3XUg9nQbgIMd+sCqq1p09h939EaDOC133AmhMWZTKFBXAgxPqqS7jpiOA2s+qmYX/188an7NlzFheOKLFstGlIC3AMRTGOL8mlLBSey3XyF1xj2wtmmH/FUbISQmRdQYsDMUoAAFKEABClQJiFsUi7NPjl0uxcuLD3llefnFacg6d6xWuUqdHgc79sGR3kNw01MzILRujaJSCwSBM0+8grIABSJIgOGJ6+DEEZo4hypyh57hiVwplos4gWCFJ0oFJ/HvvY3kJ2fB0rsv8ucvA+LiIm4M2CEKUIACFKAABaoE1GoVUhJ0MFvteOiTHV5Zxq6ci2lf/sNjOaFtO5Rnj0HFqByYBw/jzxJeVVmAApEhwPCE4Ulk3MnsRcgIBCM8USo4SfrL80ia/SoqRuei8JOvAC+LwoUMKhtCAQpQgAIUoIDfAg3iddBqVPhs6xmsOHjZYz3x5Ua88/tx0Nis8q4XGwvzoKFVQcqoHFjbtZd3HktRgAJhJ8DwpHZ44urxHX8e3eHMk7B7K7DBwRKQE544X8uxzoljPRTndU8CbpsgIOXXDyD+y89RfvtdKH7zPUDcb5AHBShAAQpQgAIRLyAGJ2KAYrML+MuiQziZX+axz4++80dcv3O1fBe9Hvb4BAhxcbB27Q7ThEnSHyE5RX4dLEkBCoS8AMMThichf5OygeElIGfBWHfhiCN4CerME6sVaXfejNg1K2F84mkYH/9jeIGytRSgAAUoQAEKBCzg2HWnsKwSs5cdxYUSk9s6e+/dgMfffLz26yoVLC+8COPIHFj08VJQIiQkQEhIFJ8NCrh9rIACFAh9AYYnVWPkaoFYf9c7EevjzJPQv/fZQoUEvAUfcheM9VaPrOabTMiYlAvdzu0omf0GyqfdJ+s0FqIABShAAQpQILIEVCpx9okWGrUKFpsd3+48h6UHXD/Co7ZZ8eaTk5B8pbAKQaWC0KIFcOYMit94F6Y7p0QWDntDAQrIEmB4IovJ50IMT3wm4wmRIuAt9JAbnoge3uryZKYqNSIjezC0J35C0Uefo2LCpEghZj8oQAEKUIACFPBDQK1SITFOK61/Ih5HLxux7qgBpwrKcaG4aiaKVq1CVno87vzmTXT99J3qq5QcO42EkUOgPXcWxmdehPGR3/nRAp5CAQqEswDDE2VGj+GJMq6sNQwEvAUevoQn/gYoakMeMkcNhvrSRRTO/R7mkaPDQI5NpAAFKEABClBAaQFxBkpCrAYx2tqP2pgqbbhsrECL1Hhpdorq6BHou3etbs7F4xcAjQYZN2RDd+gAyu5/ECWvvq50c1k/BSgQQgIMT6oGw/HYjquh4YKxIXTDsikU8CagPn8ODYf3hzjzJH/RKlj69PN2Cl+nAAUoQAEKUCDKBMSARK9TQ6dVS2GJ82G1CYgdOgjaHdukly7tPw574yaA2Yz022+EfuN6lN/xCxT/+x2ueRJl9w67G70CDE+u3ao4GHcDZ54EQ5F1UMBHAe2xI8gYNQQQ7MhfuhbWLt18rIHFKUABClCAAhSINgFxAz7xkR7xb0GAtCuPeMR/9B5Sfv9b6b8vb9sPW+s2VTR2O1Kn34W4RQtQMXI0Cj/7BtDpoo2N/aVA1AkwPGF4EnU3PTscmQLiorAZ40dDiI+HYfVm2FpmRWZH2SsKUIACFKAABepEQFVSjCZd2wAVFchbt7X2L2UEAclPPIaED95FZd/rUPDtImn3HR4UoEDkCjA8YXgSuXc3exY1AjEb1iJ98njYMzJgWLsV9syGUdN3dpQCFKAABShAAeUEUmdMR9y3X8KwdC0sfa+75kJJ/3gNSS89C0vb9shfthZCcopyjWHNFKBAvQowPAmB8MR5wRVvi6x4Ku9u8RZHnRcK3O9pX693Ii9OAT8FYhfOQ+q9d8PWqjUMKzbwhxY/HXkaBShAAQpQgALXCujXrET6rROR//1iVA4Z7pIo7otPkPLwDNibNoNh2bqqtVF4UIACESfA8KRqSMXMwVtm4cvgy17zxNWFPTXGW3lvHWF44sswsmyoCzh+WLH06oP8BcuBuLhQbzLbRwEKUIACFKBAOAkIAhp3b4ei2W/AnHOD25Y7fpkjzjwxrNrEx4fDaYzZVgrIFGB44nmnHZHRn1CF4YnMG5DFoktAXMtepVbBsai9uB6bIAjS4my+Hkn/mo2kF55GxbARKPxyPqDV+loFy1OAAhSgAAUoQAGvAkl/eR6Wrt1RMWmyx7JVjxFPgBAXi/zFq7lwvVdZFqBAeAkwPFFmvOo1PHHuUs30hzNPlBlw1upewLEVYIxWDbWLrQDFM+2CAItVgNlig7g1oLcjedZvkDDnfZTfcgeK3/4A0vL4PChAAQpQgAIUoIACApozp6HfuA7ld031Wru0gP2E0YAA5P+wApY+/byewwIUoEB4CDA8UWac6i08cdWdmo/yMDxRZsBZ67UCWo0K8XotxL9rHgUFJhQXm2Gx2JGeHofMzNqP2ojbA5abbbBY7ddWKm4NeP8UxC34HsZHH4fx6edJTwEKUIACFKAABRQX0B4+CGunLrKuoz12BBmjh0JVYULhF9/BPHK0rPNYiAIUCG0BhidXx8fXdVs9jSzDk9C+79k6BQXESSAJei1idGrpKufPl2LDhnPYvv0yDh0ucHnltm1S0K9fYwwZ2gytWyVLZSw2AWUmC8RHe6q+YEH6zTcgZssmlLwyG+UPzFSwF6yaAhSgAAUoQAEK+C+gPn8ODUcMgKq4CEXvfISKybf5XxnPpAAFQkKA4UnVMHhbh9XXwWJ44qsYy0eEgPiITmKsFhqNCpcvl+Hzzw9j1aoz0mM5co+BA5pi6tQuaNmyAex2AaUVNtiuGJExLhvaA/tQ9O7/+AOIXEyWowAFKEABClCg3gTUhjxkjB4CzflzKJn9Bsqn3VdvbeGFKUCBwAUYnnjeacfb5jXuRiCo4UnNRnhLeby9zsd2An/TsAbXAuLjOQ3iddKL69efw6t/3RoQ1YMzemLixLZAcTF0A66H+tRJFH45j1NfA1LlyRSgAAUoQAEK1KWAqtSIjLEjoDt8CMYnn4Hx93+oy8vzWhSgQBAFGJ7Uc3gijqW354WcAxE55WveI1wwNojvGFblUkBcCFYMTsT1YOfMOYAvvzoSFKmbrk/Arz/7DXDpEoq/WQjTdQOCUi8roQAFKEABClCAAnUmYDYjfVIu9Nu3omzqvdIsFC52X2f6vBAFgibA8CQEwpOgjaaMijjzRAYSi/gkIK5xkpwgBicqfP31UXz0v/0+ne+ucCNTHv6x6SkkxNih2bAOtq7dcKXcKj3Kw4MCFKAABShAAQqElYDVitTpdyFuyQ8w3Xiz9BgytNqw6kKkNHbMLQ/V6sryb96KlK6xHwoLMDypAvb2tIuvwyD7sR1fKw60PMOTQAV5vrNAQqwWep0au3ZdxjN/2hgUoNbGM3jtx2dhUWnx6KA/47bf52Ls2NbSIrLGcktQrsFKKEABClCAAhSgQJ0KCAKSfzsTCZ9/DPPAwSj4eiGg19dpE6L9YmJw4hyWuPpatDux/64FGJ5cdfH2NIwv9xDDE1+0WDZsBcTHdVISdDCbbbhn+mKUllYG3JeOJT/hta3PoUCXjN8NfAmF+lRoNWq8914uMjLipNknVpuLbYwDvjIroAAFKEABClCAAsoLJP3tZSS98iIqu3VHwcIVEBKTlL9oFF3BeWaJ2HVPs0tqhieO/65Zh68zUwI5N4qGKSy7yvBEmWFjeKKMK2sNMYGkOC10WjU++eQgvph7OODW9c3fgxd2voqzsY2k4KRMl1BdZ86YVvjtb/vAahNwhbNPArZmBRSgAAUoQAEK1J9A/JwPkDzrYdhaZsGwYgOEtPT6a0wEXdmfmSXO4Ylz2OLLzBTnsr6cG0HDELFdYXiizNAyPFHGlbWGkIC41klqYgwEQcBdd/8Q8KyTIZd/xDN7ZmN/Yns8df3TqNDG1uqtuKbK3LkTERenrZ59YhNs2Ju3Cx1SOyEhJjGEdNgUClCAAhSgAAUo4FkgduE8pE6/G/bMTClAsTdrTrIABeSGJ+5mh8g9310zGZYEOIAhfno0hyeOdU6cH9dxHrKam9XIHU6GJ3KlWC5sBWK0aiTGabFnTx6eenpDQP0Yd24FHjv4Ljam9saLfR+HTe16AbVZj/VDi14VWHxsGVadXIGSymK8MuJfaJ/aKaDr82QKUIACFKAABShQHwL61SuQdsdNEBISYVi5EbY2beujGRFzTX/CD1eP7dQE8SUQ8aVsxKBHUUeiOTxRcpgZniipy7pDQkAMTsQA5T//2YVFi0/63ya7gFtX/RNtMtT4a6/fXlOPRVuKwpS9KEzei9JGB3AFlxGrjcWs65/CQ70fg1ql9v/aPJMCFKAABShAAQrUs4Bu53ZkTBgNQa1B/qKVsPboVc8tCt/LMzwJ37ELh5YzPOFWxeFwn7KNISjQIF4HrUaFWb9bjaNHi/xqocpshn7tapizR0P4ebs+u8qK4qTDKEytCkyMCScB1dXtifs26YcPbvwYGbosv67JkyhAAQpQgAIUoECoCWiPHUFG9mCoLJXIn7cUlv4DQ62JYdEeV2uOiA13LPrqLVzx9ro3BK554k0ovF+PlPAkkJ1yXG1T7BhVT695GnnOPAnv9wVbL0NA3GVH3G3nl79ciouXymScUbuIurQUuu1bYR6RDWP86erZJcUNDsGuuXbXHo1Nj47nf4Htb70DFVQoNAa+s4/PjeYJFKAABShAAQpQQCEBzZnTyMweBNWVEhR+/CXMueMUulJkV+u8nom7QMWhUHM3HV936nElyd12Ivf+ioTwxFXA4UvowfAkcu9v9kxBgdSkGKgA3HnXQp8Xi7UUXsRu/XzYu+ajIvM4rLpSjy1NLemKzj89hDhzQyxcMFkqy/BEwcFl1RSgAAUoQAEK1IuA2pCHzBEDoL58CUXv/g8Vk2+rl3ZE0kV9WYfEl7KRZMS+yBOI5vDE20KxoqA/i8WK53Hmibz7j6XCWMAx8+T++5fgcl65/J7kn8W6vq8jc18/5A1aB2uDQrfnamxxaH9qKppdHl1dhuGJfGqWpAAFKEABClAg/ARUJcXIyBkG7fGfUPLKbJQ/MDP8OlGPLXaePVJzZom3ZnkKT1zNSqlZny/X8dYOvh6aApEQnriSDdbME39HjeGJv3I8L2wEkhN00KhV+N3v1uDIUfcBSM0OCZeOYdvgN2BsdBF99z+P1G0m7BnzPQzND7vtt+5KQyQYWyGlvCPax/TB/Ld/A7sAFJfysZ2wuVnYUApQgAIUoAAFfBMwmZAxaSxidm6D8dHHYXz6ed/OZ2kKUCDoApEYnvgSnAQd9OcKGZ4oJct6Q0YgKU4HnVaFF1/cjB+3XvTYrjRzEWIu7sG83K9Rmp4nle165BE0LhgM7bGjMLZdjivt12F/o6sLw4plEq+0gd2ihin5LAStWTpPp9ahTWpbNIxvgiHNRyKn9Xi0S+3IXXdC5s5gQyhAAQpQgAIUCIqA1Yq0u25G7OqVKJsyHSWvvwmoxIemeVCAAvUhEEnhieMxHH8etQl03RTnsWN4Uh93M69ZpwJxeg3iYjT48svDmPPxQbfXblF2AY8efBqTpppwOs1WXa79yWloeXGC9P8vbXoO3UzHkHOPFptbmqrLqAQN+u9+DQkVzVAeexFthlxBbIez2HRmI44WHoFNqKpPo9KgYXxjdM3sgREtx2Bk1hi0Sm5bpx68GAUoQAEKUIACFAi6gCAg5eFfIn7uZ6gYnSstJAudLuiXYYUUoIB3gUgJTwKZbcIFY73fJyxBgWsExEd2xEd3DIZy3HvfEpdCba+cxENH/4Sx91biclLtWSUtL0xA+1PTpPOSKo14bcuf0MJ8CTffnoHFnS9X15dY1grX730FKkGNv746HF26pMNosqLCYsGRwoP48fxGrD6zHAcMe3C57BIE2KVztWodmiY2R8+GvTEyKwfDWoxCk8RmHEkKUIACFKAABSgQdgJJr7yIpL+9jMo+/aStjBEXF3Z9COUGq1UqaLUqaNVqqNXiBB8V7HZB+mMV/9gECELtn2VDuT9smzICkRCeBBKciKoMT5S5t1hrFAikJMZArQJeeGETtm67VKvHXYsOY+qZF5Bzjw1F8df+Y9MofzC6HX2k+pxYawVe/fE5dCw7hRk3tMeH/Y9Uv9bu1C8wTDsVb75ZtXCsu512LLZK7M/fg03n12HdmVU4VLAPhaYCCKi6vl6jR4ukVujduB/GtB6Hwc1GICU2NQpGil2kAAUoQAEKUCDcBeLnfIDkWQ/D2r4j8peshpCcEu5dqvf2i78MjNdroNOqPbZFzE0qLDaYzFdnUdd749mAOheIlPDEFZzcx3cYntT5bccLRoqA+NiO+PjOuXNGPPTQ8p8jCqC/YQdyCl7D+F8IKNO7TulTSjqj74Hai5/p7BY8u/0V9C/ehycHD8VrozZBUNugsmvxVfY6jB94PSoqbSj34R+ucmsZ9uXtwrqzq7Dx7FocKTqIK+aS6iGI18ajVUpb9Gs8AGPbTpT+TtAlRsoQsR8UoAAFKEABCkSQQOy3XyF1xj2wN2kKw6pNsGc2jKDe1W1XYrRqJMZpqy+aZzTjhKEUp/LLcPmKGa0zE9A2MxGtMxIQH6ORytnsgjQDWpyRwiP6BCIhPAnGqHHNk2Aoso6oExCnNIpbFotrl82ZcwBffnUEIy5uRL/yf2LSXSpUat3/wxJX0QiDdv77GjOVYMcfd72Okfk/4j9dxuDRm3+ERXcF1zW9HmumbURJmQWBzpo0Vl7BzkvbsPrMMmy9sBE/FR5BmbWsui1JMQ3QLrUD+jcdghva3ojumb2g18RG3fiywxSgAAUoQAEKhJ6AfvUKpN1xE+wpKchfsRG2llmh18gQb1FsjEaacSIe+aWVeG/9CRy9bHTZarVahRt7NsWE7k0g/rf4c2hJuYUBSoiPsRLNY3hyVdWx4KzjK3JnrrgaFy4Yq8TdyjpDUkCv0yAhViP9QzJ/zKOwF72BqZMBW43ZjwnlLVAWd7aq/T8vEq+26zByy6eu+yQI+M3B9zDp/HIs7piNZ2eVYtvFrXg1+x+Y0mWGIg75JgN2XtqKlaeWYPulLThZfBxmW8XPTVZJj/d0SO2MgS2GYWzrieic3g1a9dXfVijSKFZKAQpQgAIUoAAFXAjodm5HxrhsCDF65K/cID3Kw0OegE6jQlJ81aK7648Z8NmPZ2C2Vq2Z5+nISo/HzOFt0ahBLKw2uzQDJdBf6Hm7Jl8PLQGGJ8qMB8MTZVxZa4gKiFMe4//0FD5c8xoenAAIYkAiqJBe3AtZ5yehKO4YTrb9FE0vj8KFRiurezFs6wfQWd0/InPP2XmYeuhTWG++Gb+amonPDn2GtVN2o0lC0zqROGM8hb15O7HsxCLsurwVZ66chtVu+TlQUSMjPhOd07tiaItsjG41TpqtolZ5fma2ThrOi1CAAhSgAAUoEPEC2oP7kZE7HCqbHfkLl8PSp1/E9znQDooLw4obHoizptcdNeCjTad8qlJ8fOelm7sjJU4Hs8WOsgqrT+ezcHgLMDxRZvwYnijjylpDUUAQkHrPXfh76Xw8kw3o1Dq0KhuB9MPjkWCqCjnWd3sEKpsW1x/7EzZcNxOCqmqxrf67/oZEU0uXvWrcKAHPPTcIWUvnQvurmbBcPwD/ffUefHd6HuZM+LZeJMSFZ48XHZNmpqw6uQR7DLtwsfRcrS2TGyU0QbeMnhiRNQYjskYjq0GbemkrL0oBClCAAhSgQOQLaM6cRuaI/lCVlaHgm4WoHDI88jsdQA8TYrXQ69QoKKvE09/tkzXjxPly3Zsn47HRHaQvXym3SDvx8IgOAYYnV8fZ8diO43GdQHbxYXgSHe8f9tJiQdqt4/F48gZ8dL0e9/SbiVkDfoemSU3x1lu78cOiEzDGn8LWXv+HtkfvQav88TjY7i1cbLhasut18I/S7BTnY+SIlvj1r3sjNlYDi9UO69ffIGX63bC274D1n/8Hl1VlGN6yaued+j5sgg2HCw5gy4UNWHt6BfYb9iCv/HL1lslimNQ0qQV6ZPbGqFZjMbTFSDSuo5kz9W3D61OAAhSgAAUooLyA+tJFZGYPgtqQh6IPP0PFhEnKXzRMr5DWQA/BLuAviw/heF6p3724b0hrDGmXgUqLHaWcfeK3Y7idyPCkasQcQYlzYOJvgMLwJNzeCWyvzwLibzjSbhiBJ1oeQNKYW/GLu/6NBjHJcOzAI1Z48WIZbnl/GnbhBwzb/l/obAkoi7uALb0eA1QCOv80E03zsquvPaB/U0yd2gVZWQ2kr1VY7Cj/+R+kmA1rkT55POyNGuPC6o3QZDTyuc11dUKl3Yz9eXuw8fxarD+7CofyD6CoouaWybFo2SALvRtfj5xW4zCw2TBumVxXg8PrUIACFKAABSJQQFVSjMwxQ6E5cRzFb7wL051TIrCXgXUpRqdGYqwWZ4vK8ey8AwFVJq5/8uzErtKaJ0WllQHVxZPDR4DhydXgpGaI4hhBhifhcy+zpXUoIP0DPbw/Ll05C81/PocwtvZvOLQatbSCuaCyIuufTTGoxRD8sc3bOHiwAEVFZrxrfAQ/qTYhRzcTkzMfQqdOaejduyFift4GTpz+KG5HLC7GVfOQFkcbPwr2pCQYVm+BvVnzOux1YJcSt0wW109Ze3olNp1fh6NFh2pvmaxLQOvktriu6UDktp6Ivo2v55bJgZHzbApQgAIUoEB0CZhM0iKyMfv2wPjMizA+8rvo6r+X3sbpNdIv+TYez8f7608GZKNVq/D21L4Q11ARd4IUtzDmEfkCDE8YnkT+Xc4eBlVAmho6YgDUxUXIn7cUlv4D3da//PRCTF9wO+bd/gNy2uZWl1t/Zi1yPh2FX/Z5EP/KfbP66xabAHOlDZUeVjzXHjuCjOxBgEoNw5otsLVpG9T+1WVlJeZi7MrbjjWnlmHLhY04XnwU5ZarWyaLM3napnbAgKaDcUPbSejesBdi1Pq6bCKvRQEKUIACFKBAOAmIj1TfeRNi165G2f0PouTV18Op9Yq21bHeydxtZ7D0wOWAr/XCpG5onhrHdU8ClgyfChieVI2Vq8d2/J11ItbHx3bC5z3AlvogIE4FFZ+pVVksMCxfB2uXbh7PHvvFIBwrPoKfZuYjVqeFRq2CWg2oVCoM+rAPWia3wmc3fSOl9eKK5YLM/d6kxdFGDoTKZIJhyWpYe1y7booP3QqpouKWyTsu/YiVpxZj+8UfcapE3DLZLLVRBRVSY9PQIa0zBjUfjtw2E9AprSu3TA6pEWRjKEABClCAAvUsIAhIeeh+xH/9Bcon34bitz+E9ANYlB/i7pAxWjXeW38Cm44XuNUorChAibkIrZPbeRR7PLcjOjdpIG1ZLK7RxyPyBRieXB1jx4Kxjq84Fo715y5geOKPGs8JaQFxOzzxWVohRg/Dyo1eZ3wUmAzo+X4rTGp/G97M/eiavi346Vv8Z8ffsfiOjX71W1wUTXx0SF2QH/Gry4tbJu++tAPLT/2AXZe24azxTPWWyeLWyBlxDdE5oxuGtchGdtZYtE/rKAUtPChAAQpQgAIUiF6BpJeeRdI/XoN5yHAUfDUf0OmiFwOAY+bJ0gOXMHfbWbcWK08tQXarXK8/S71xdx+IWxfzsZ3oua0Ynigz1gxPlHFlrfUkoPtxMzJuzIU9JQWGtT/C3riJ15b8bcuLeH37y1j7i11ol9rxmvJ2wY5J32Rjwa1rvNblroC09sroodCcOoHCT76COXec33WF04nilsk/FR3FtoubserUEuwz7MaF0vOwC1VbQGtUGmlHn24Ne2FEy9HSn5YNWodTF9lWClCAAhSgAAWCIBD/3ttIfnIWLD17o2D+MggJCUGoNTyriI3RSGvyHbp4Ba8tPeKyEwfz90qzfJskel5XLz0hBq/d1lOcTo0iY6Xs2dPhKcdWOwQYnihzLzA8UcaVtdaDgH71CqTdPgm2Fi1hWLEBQlq6rFb0er+V9DjJ9nt/clv+w71vY3qPB70m+x4vKC6OdsNI6PbvjerV5cUtkw8V7MeW8xuw5vRyHCjYC4O4ZfLPj0KJWyY3S2qJnpl9MLr1WAxuPgKNEryHYLIGm4UoQAEKUIACFAhZgdhvv0LqjHtga9Vamj0sJKeEbFuVbJharUJKgg7llVY8/Nmuay4lPq5zqvg4+jS+3msz+rRMwcPZ7SFucnCl3OK1PAtEhgDDk6pxdH5kp+bo+vP4DsOTyHh/RH0vHP/YWjt1Rv7SdbJ/W3HAsAc5cwfiif7P4bfX/Z9bR5PVBJtgRaIuKTBrcXG0O25C7LrVMP7pJRh/Oyuw+iLkbMeWyevPrcaGs6txqOAAiisKIc5cEY9Yrbhlcmvph4Sc1uMxoOkQJOuj8weqCBlydoMCFKAABf7a7tkAACAASURBVCjgUkC/dBHSptwGe8NGUoAiZxZxJFI2iNdBq1Hh4y2nsfpwXq0urj+7Ctc3HQy9xvPi/GII8/T4zmiVnoDSCisqLVzvJBLvFVd9YnhSe7edYI07w5NgSbKeehNwTPOsHDgYBV8vBPTyd3n55eK7seTEfOx/4FzdfRgXBKQ+MBVx875F2bT7UDL7jXqzC+ULl1lKsTdvF9acXY5NZ9fhWNFhGCuvVDc5QdwyOaUdrmsyCGPbTESfxtchXhu9U3xDeSzZNgpQgAIUoIAvAtJj2JNypV+GGZZv8Lp+nS91h0tZnVaNpDgtrHY7/vzDYZwuKINFKMWW/P+iZcxNyEr2/pjzHde1RG7XRhB3Jy4urQyXrrOdQRBgeMLwJAi3EauINIEGzz+FxH+/DtPY8SiaM9enFdotdgs6vtMQXTK6Y+Ft6+qcJum5p5D0xuswTZiEog8+9antdd7YELmgtGXy5W1YffrnLZOLjsJkLa9uXYOYFLRP64D+TYfghjY3olvDntwyOUTGjs2gAAUoQAEK+CLg2ABAXKvDsMz7zom+1B0uZR277uSXVuLvyw7j21NP4Yx5MXIy/ot0needJLM7NcKUAS2lrnKXnXAZ8eC1k+EJw5Pg3U2sKfwFxK3tHrwX8d9+ibLpD6DktX9KC2H5ciw5sQD3L7oDn0z8HiOzcnw5NWhlxVkzKU/Ogrn/IBR8+4NPs2aC1ogwr+hS2QXsyduJ5ScWYcflLThVchKVNbZMTotNl7ZMHtxihPTIT6f0rtJCtTwoQAEKUIACFAhtAc2J48gcNRgqkwn585bA0n9gaDdYgdYlJ+igUauw6uQajP9iNJrFjMSw9L+4vVJSrBb3D2mDHs2TpTKmSjtMZqsCLWOVoSzA8IThSSjfn2xbXQqI64bcfiNi16+F8annYHzM/VolnpqV+8VAHC8+iqMPGiBuo1tfR9wXnyDl4RmwduyE/GXrZa/XUl/tDYfrnrlyEjsvbcPyk4uwO28HzhlPw2qv+sFBHOvM+Ebokt4Nw1qOwsisXLRL7RDYYsDhgMI2UoACFKAABcJQQH3pIjJHDoS6IB+Fc7+HeeToMOyF/01Wq1SIibGhx7udIM7AXXDLbuw7a8fpgnJcKDZJFWvVKrTKSED7RkkY170xEmK00tcrKu0oZ3DiP34Yn8nwpGrwxAVj/VkY1t3Qc82TMH5TRGXTxR1rxo6A7sA+aa2Q8mn3+cVQYDKg5/utcFP72/FG7od+1RHMkxyLo9mat6haXV7mTkHBbEMk1yUuPHus8Ai2XdyEVaeXYV/eLlwUt0xG1cJpGpUWTRKbonumuGXyGAzLGoWWSa0imYR9owAFKEABCoSNgKqkGJkjBkJz9gyK3v0IFZNvC5u2B6Ohz67/P7y35w28N+FD/KL71OoqTZU2XDZWoGVqPMTFYR2HuIFhmZkLxAbDPlzrYHjieacdcVz9CVUYnoTrOyIK2y39wzlqCDSnTuLRLsPxxLpFfiv8dcsL+Of2V7D2F7vQLrWj3/UE88SYDWuRfssE2JNTYFi3NWpXlw+mqae6xJkoVVsmr8eaMytwMH8vDKa8Glsmx6B5Ugv0bNQXo1vdgKEtspERl1lXzeN1KEABClCAAhSoIaAqK0P6uOyAf4EWbqhHCg4i+/Pr0Cm9C9ZO2QG9Tg1xMdkaWUl1l6x2QdpRx1xp+3m/wnDrLdsbLAGGJ8GSrF0PwxNlXFlrEATG3PJQdS0Z5nKsOr5WmrI5o+sobEprWusKy795C2J5x9+OF8X/d3X0er8VtGodtt97rNbLNa/p7twgdM1tFdq9u5E5dgQEvR6GlZuicnV5JX291W22VWC/YQ/WnV2FjefW4HDBARRVFFafJm6ZnNWgDfo26Y+cVuOkbQK5ZbI3Vb5OAQpQgAIUCJKAxYL0m8dBv2UjjE88DePjfwxSxaFZjSAIGDCnMy6UnsemqfvRokFWrYZqNCqI803sdkHaUYcHBRwCDE+UuRcYnijjylqDKKA5cxqZw/vDVF6O8sWrYOnTrzooqXkZR/BRM/RwBCo1yx0w7EHO3IF4csDz+E2/x6tfci7r6twgdst9gHLsCDJGD4XKaoFh8WpYe/Sqi8vyGm4ExC2TxQVp15xejs3n17vYMjkRbVLa4/qmVVsm92rUl1sm826iAAUoQAEKKCVgtyP1/imIW/A9yu6aipJ/ve3zpgFKNS3Y9b6/5z/40/rf49nBr2BG798Gu3rWF8ECDE+qBldc88TdEXaP7Th3pmYHLhRULYDEI7oFxG3qMnKGS/8oTu4yGv9Z+oUE4irYkPu1BxbfhaUnFmD/A+dqzRqor7DE1Qirz59DZvZAqIuLkT9/WVSuLh/Kd35xRRF25W3DqtNL8eP5jThR/FOtLZPF2Sji42ADmw2VApVuGT2h08SEcpfYNgpQgAIUoEBYCTR45kkkvvUvmMaOR9FHnwPaqkVSI+UQZ5sM+F8nNElshk1TD0Cj5k6BkTK2ddEPhifBXyxWHLd6m3niauXbml9jeFIXb6vQvsZjY27FB3uXoVirx/ReY3EhNlF6LCeQ8MRit6DjOw3RJaMHFt62thZAKIUn0puzsEBaXV5z4TwKP/kK5txxoT1gUd46ccvk3Zd3YPnJH7Dj0lacLjmBSnulpCJOqhW3TO6Y3hVDmo/AmDbj0DGtC7dMjvJ7ht2nAAUoQIHABOLfexspT86Cud/1KJi3FNDrA6swhM7OnTtQepR41V3b0TG9Swi1jE0JBwGGJwxPwuE+ZRuDJPDsyEl498BK2DMbwrBmi/R3zXBD7iwT53KLj8+DOPPkk4nfY2RWTkiHJ9KH7lIjMnJHQHvkEIrfeBemO6cESZjV1IXA6SsnsOPiVqw4tVjaMvm88czVLZNRtWVy18weGN5iFEZk5aBtantumVwXA8NrUIACFKBAxAjEffEJUh6eAWunzshfsgZCYlJAfau5/p1zRTV/iSe+5rw+npxfxLl6zNz5OguOfYOZS6filz0fxnND/xpQf3hydAowPGF4Ep13fhT2Ovbbr9BgxnQIbdshf9laCMkpkkIwwpPcLwbiePFRHH3QALVK7TE8kfMPYJ0Mj9mMjBtzELNjG4pfmY3yB2bWyWV5keAL2AU7fio6gh8vbsLqU0uxz7Abl0ovVG+ZrFVr0TihGXpk9sLIVjnSDj8tkmovDhf8VrFGClCAAhSgQHgL6JcuQtqU22Br2gyG1ZshpKUHpUPufhZ0F4DI+dnRW3hyxVyC3h+2QawmFrvuO4kYPvYblLGMtkoYnjA8ibZ7Pir7Gz/nAyTPehiWnr0xIKkLzJraz686LwbrQHLeZafm1x3/XWAyoOf7rXBzhzvw75wPXPrW9247bgfdakXaPXcidukiGB9+DMbn/hyV90ckdtqxZfKm82uw9vQqHCzYi/xyA4SfNxkUf2hqntQSvRr2w+jW4zC4+XBumRyJNwL7RAEKUIACAQnoftws/bLJnpIKw6pNsDdrHlB94sneZjr7utmAt18Eite8f9EdWHJiAb65eRkGNBsScB9YQXQKMDypGndXS4UEckdwzZNA9HhuUAWSXn4BSX9/BRUjR6Pws28Anc6n+r2l/a9ueR7/2v4q1v5il7SYZ9gdgoCU3zyI+C8+genGySh6/+OIXV0+7MYmyA0Wt0wWZ6WsO7MSG86uxZHCgyg219gyWROHVilt0K9xf4xpPR79mw5GUkyDILeC1VGAAhSgAAXCS0C7dzcybxgJQauTZqDY2rQNqAN1HZ6Iu/rd+l0uJrSbjHfGfhJQ23lydAswPPG80454d4TVbjtcMDa639C1ei+GAg/dj/ivv0D55NtQ/M5HfoUCnsIT8bXj/eZDbdeg9c7x1+A7P7MayqOT9OpLSHrtL6gYNgKFc+f5HDKFct/YNvcCpeKWyZd3YM2Zn7dMLjyMUoux+oREXRLapLbH9U0GYlzbSejRsA/itPEkpQAFKEABCkSVgObEcWSOHACV1QbD4lWw9ujld//lzCyRM5tEbIC3IMZsM6P3B61RaavEznuPo4E+2e9280QKMDxR5h7gzBNlXFmrXAHxcZQ7JiF27WoYH/kdjM+8KPdMn8odMOxBztyBeHLgC/hN39/7dG4oFq5+vKlbDxT8sBJCQkIoNpNtUljAsWXyipOLsfXiJpwo+gkVtqvbvKfoU6u2TG4+DGNbT0DXjB7cMlnhMWH1FKAABShQ/wLq8+ekHQvVJcXIn78Mlv4D/WpUXYYnT6/7HT7c+xb+e8Pn0i9BeFAgEAGGJ4HouT+33sITsUni7JOaR82pM9yqWJkBD6laTSZkTMxBzO4dii+E+sCiO7H05ELsf+AckvVVC9CG+yEurJs64x7YWmZVLY7288K64d4vtj8wgYul57EnbweWnvgBOy9txZkrJ2ttmZwel4FO4pbJLUZiVKux3DI5MG6eTQEKUIACISqgKixAZvYgaM6fQ+EnX8GcO87nlroKT1xVUnMXHnezmd3t4iOWP1JwENmf90Pfxv0x/9bVPreTJ1DAWYDhyVURT5mDr3dOvYYnnhrL8MTXoQyv8qqSYmSOGQpxaqXSW/Ba7BZ0eKchumX0xILb1oQXlJfW6levQNodN8GekQHDqs2wN24SUf1jZ4IjcKrkOLZf+hErTy3B7svilslnYROsUuVqqNEwobE0K2V4y9EYkTUGbVLaccvk4NCzFgpQgAIUqEcBVVkZMsYMhfboYb9+3vT1kRxPu/O4C1VG3zITJRNXIa/sErbfewyZ8Y3qUYyXjhQBhidVI+ltqRBfx5vhia9iLB+wgNqQh8zh/SH+7e9vAjw1QqNWQaUC7HbALgj44afvMWPJ3fhk4vcYmZUTcPtDrQJpdflJuRDi42FYsTHgxdFCrX9sT/AFxC2TjxUexpYLG6Q1VPbl7cblsou1tkxumtgc3TN7IbtVLoY0Hynt+MODAhSgAAUoEHYCZjPSbx4H/dbNPs909ic8cefjLjzp+8gIXGq/Fa+M/Demdr0/7HjZ4NAUYHjieacdf3fhYXgSmvd7xLZKc+a09AyqqrQUBd8sQOWQ4QH3VatRQa/TQPxbDE6cj9xPR2P35V04+MsLEfvbdO3B/cjMGQZxd1vD8nWwdukWsCsriC4Bq92CgwX7sfHsaqw7K26ZvB8FNbdMVsegRYMs9Gp0Hca0vgGDmg9HemxGdCGxtxSgAAUoEJ4CdjtSp9+NuEXzYXzk9zA+80JI9ONC6XkM+F8ntGzQChum7guJNrERkSHA8IThSWTcyVHcC+2xI8jIHgSVzQ7DktUBrX4uMoqzSxL0WsTo1LVUyyqtyDea0SItAQUmA9r8uwVm9vkV/jpmNspMVlRa7RE5CtLq8qOHQFVehvx5S/1eHC0icdgpvwTExWelLZNPr8TGc44tk4uq6xJ382mV3Ab9mgxATuvxuK7JICTFJPl1LZ5EAQpQgAIUUFog+dFfIeGTj2C66RYU/XeOX7s7BrONOV8MwMH8fVg3ZY/0yCwPCgRLgOEJw5Ng3Uuspx4EdDu3I2P8KAh6PfKXr4e1fceAWqFWq5AUp62eabLjdBF2nC7EcUMZDEazVLdOrUZmsg1HSr/Hc6PvR9dGbaWvm8w2mCptAV0/VE9WX7qIzBEDoC7IR+GX82AeOTpUm8p2hamAuGXy7svbsfr0Mmw5vx4/FR2B+DXHkRiThLYpHdC/6SCMbXsjemT25pbJYTrWbDYFKECBSBRI+uffkfTiM6gYno3CL74DdLqgdlOAIM3czIhv6LHeBce+wcylU/HYdX/A7/s/E9Q2sDIKMDypuge45gnfC2EnUL2oaVo6DCs3wt6seUB9EGecJCfEQHxCRwxKPt58GvsvlLis83jRUWjUGnTO7ICbejXD6M6NpBkr5WYbKiI0QJFWlxcX4z19CkXv/g8Vk28LyJsnU8CbQFFFIXZd3oblpxZh24XNOFl8/JotkzukdcLAZsOR22Y8uqR355bJ3lD5OgUoQAEKKCYQ98UnSHl4BizdeyJ/0SogLi5o18ovz8O2S1twQ5sb3dZ5xVyC3h+0RgN9CrZNPwqtWhu067MiCogCDE+u3gfcbYfvibARiF04D6nT74KteQsYVm2CkJYecNuT4nXQaVQ4ePEK/rH8KKx2wW2d68+uwvVNB0Ov0UtlOjRKwhNjO0kBitFkhSVCH+GRVpe/YSTEtVBKXpmN8gdmBuzOCijgi8CF0nPSzj7iFuG7Lm3DGeMpWGyVUhUqlQrpsZnonN4VQ1tkS4vSdkjrDI1K48slWJYCFKAABSjgt4D0M+q9d8Paui3yl6+DkJzid101T9xv2I3vj36Fpwf/2W190xfeKv3CYekdm9Ats1dQrstKKFBTgOGJMvcDF4xVxpW1Aoif8wGSZz0Ma+euyF+8CkJi4GshiAvDJsRqUGGx4Q/f7kOJyeLWutCUj1NXTqJPo+tqlZncpzkm9GgCu11AcZn788N+EMXV5W+fBP3GdTDOegLGPz4b9l1iB8Jb4GTJT9h2YYu0ZfJew06cN567umWySoNG8Y3RLbMnholbJrcchdbcMjm8B5ytpwAFKBDiAjEb1iL9lgmwp2fAsPZH2DM9P2ojpzsrTi7Cm7tm47vJK1wW33x+PW79Lhd3dJ6G2aPellMly1DAZwGGJz6TyTqB4YksJhbyVSDpby8j6ZUXYb5+AAq+Wwzoq2Z+BHqkJsZIs0b+u/4ENh8v8FidmPxnxjdCo4QmtcqJ66U8N7ELmqfGR/TjO1Kn7XakzJiO+O+/Rvntd6H4zffqfXG0QO8Bnh85Ao4tkzddWIc1p5Zjf/4e5JVfgvh18dCqtGia1Bw9MvtgVKtcDG4+As2SWkQOAHtCAQpQgAL1LqDduxuZucMhJCTAsGozbC2zZLVJ/Hk0RquGRqOWHiUXZ1WKxwe738UfVv0eJ36dB8GuhSBcnSFttpnR6/1W0r9zu+8/hTht8B4XktVoFooagWgPTzxtRezvNsXizcPwJGreQnXUUUFAysO/RPzcz2C6YSKKPvwU0AbnOU6dRo2keK202OuvP9vpsUOCYMfqM8uRnZXrstzwDpm4Z1ArWG0CrpRH8OyTn3uf/MRjSHj/HVSMyEbh58FfHK2O7i5eJgoExC2TD+Tvw4Zzq7D+zGocErdMNuVDXIBPPMRH8MQtk3tLWyaPw4BmQ7llchTcF+wiBShAASUFpB0hRw0GBAH5qzZ53NhADEz0MWqIP5e6Ol5Y9xxe3vgSNkzfgr5N+kmPiIvr7FlsAv6w5hHM2f9ffH7jAgxrOUrJLrHuKBeI5vBETjgip4yrW4jhSZS/sYLafasVaVNvR+zyJSibMh0lr78Z1FkO8XotYmPU2HeuBK+vOOqx6eeNZ3GlsgSd07u5LJeVHo9nJ3aV2ldkrKz1W4GgmoRQZUn/+BuSXvoTKnv0Qv4PK4O6OFoIdZNNiUABccvkvXm7sO7MSmw4txZHCw+ixFxc3VNxy+TWKW1xXeMByGkzEX0b9+eWyRF4H7BLFKAABZQUUJ8/h4YjBkBVWor8H1bA0qdfrctpNSqIP4uKf4tHRYUVu3cbcORIIYqLK1BQUAGdTo3lca9hm2U+Huv8Iv5y0x+q69hzaT8GftgbI7LG4JOJ3yvZFdZNgaheMFZOMCKnDMMTvpGUEzCbkTExBzE7t8H4+B9hfOLpoF8rMU4rTY9csOcCvtt13mP92y5ulhagTNa7XvxLo1bhrSl9oVWrpJkn4gyUaDgcq8tb27QL6uJo0WDHPoaWgLHSiD15O7Dq1BJsvrAB4s5aZTW2TE6KaYC2Ke3Rv9kQjG0zET0a9kashtOjQ2sU2RoKUIACoSUg7ljYcHh/qC9fQsG3P6ByyP+3dx/QcVXn2oDfaeq9Wbaq5d5777ZcMKZDAg6YUAIkIVmBFHIvJQkBbigBboAECISaXEogFNu4y7333lStZo16G2nq/+8jRh6J0fSjMvOetVg2nn12efYZSfNp7/3Nkzpo/QWe+HthYT3ef/809u0vtdv5IyOeRnXsMfTTzsbkoocxY8YArFw5HCtWz5LO+jpw12mEq2N718DZG78T4MqTdx3OKYMnfvfI950BKRobkLBkHtTnz6LuxVfRvOpuWTpvzbLz6paLOFxU02UbraYW5NVe7HLVifXGJ64Zicz4cNQ3G2E0tZ2xEAiX9XR5c1I/aLfu9cnhaIHgxjH2fgGRMvnw5f3YkLcGB8v3oqAuFy3GFqnjCigQExKLobEjMDNtHhZnLsfI+NFMmdz7p5U9pAAFKNCtAtLPtYvnQH3xAmrf/RfUN98EjVqJ5mYjXnvtCLZtv+SwP3vH/xJNYZcQ0pKEWYdflcoW9luDi4PewzvXvo9bR61Eq8GMphZjt46LjQWWAIMnDJ4E1hPfR0ar1FYgcdEsKMtKUfPGu2i58RbZeh4RokaQRokP9hYi52yF1+08d/M4JEQEoa7JAJODdMdeN9QLK7CeLm+JjHTrcLReOBR2iQIOBcQWviOXD2BD/lrpz0v1BTCY2845Eof7JYQmSYHWOWkL2lImx46AUmF/HzupKUABClAgQATEiurrlkFzcB8Mb/0D+XOvx5NP7sHliianANum3AWjpq3cnP1vwaw0YNf4nyOiLgs/ML6C3/1uJmJjQ6A3mtGoYwDFKSgLeCQQyMETAcYDYz16bHiTnALS3tB506Cor0P1x1+gdUG2nM0hPESNYI0S285r8d7uAq/aCg1S4bWVE6U6ahrFmSdeVdcnb9YcPoiEFdmwqFSoXL8NxpH2z4fpk4NjpynQhYA4eDa/9iLE1r7NBetxvOIwShtFymSTdIdSoUJyeH8pZfL89GzpQL+B0YPpSQEKUIACASYQEaxE+KqVUP3nc7w/4na8n3atUwEzTMiZeVt7ubFnf4W8xK/RGJOLWUdeRYg+DrExIXjxxflITAxDY6seB4sP48jlg8irvYDszKswO22BtFqSFwW8EWDw5IcS36mtHVegiKCKvX931ZoHxroqxXIdBKRTybNnQ6HXo/KLdTBMmyG7kAiciABKfmUT/rj6tFftjegfiV8vHS4FTUTwJFCvttPlxTy2onLtlu8cjhaoLhx3YAmIlJHna85g96Vt2HppE05pj3dMmazUICUiFeP6TcTCjGWYlToPAyJSAwuJo6UABSgQQALijD1x1l5tjQ5HZtyMq/LX48uUJXhl1L0OFZpDyrFn4s/by8TXjEdV7FEMyb8T6WVXQxdcgYaIPJhT8hE1rAKHyg9Ab9LjeyPuwOMzn0ZcaEIAKXOocgoEevDEamsNllj/v3Mwxd05YPDEXTGWR/uKBaUKlRu6b8WCQgHERgRJAY+n1pyWgiieXr/IHoqxqdHccwpAVVQobb1S1NV2ywoiT+eM91GgOwUM//+H2dNVJ7D90hbsvNSWMrlaV9UhZXJ61EBMTJ6KxZlXSSmTY0PiurOLbIsCFKAABWQSiIkIglIBPProDhw7rsUPcj/HXbkfYUPSLDw/7mewdLG9sybqNA6P/n2HXin1oYhtHIG6qPMwqhs7vDZlwFT8OfsvGBQ1VqaRsNpAFWDwRJ6ZZ/BEHle/rVU6K+PGq2GJjIJ24w6YsgZ161itW3cuN7TiiS9OwuDBQa8zB8Xj3jlZUpriukZ9wJ13Ym/CpLNrFsyAsrwMNW++J+vZNd36wLAxCvhQQGdsxnHtEWwr3IRdImVyzRnUt9a1txCmCcfA6EGY3H8Grsq6BhOSpyJCE+HDHrAqClCAAhSQWyAsWIWQIBX27y/Dk3/c097c8uJNeOj0m9gXMxZ/mPwIDErNd7pSnrATp4b+xWkXNYYoDClaic+feBoZ6dFobDFCbwic5AVOgVjAawF/C554mh3Ha8hOFTB44mtRP66vPUtLQiK0OXtgTu7f7aMVvwUQvw0Q1/qT5fj4oOMTzzt3MDpUg6dvGIOwIBVa9CY0t7adc8AL0sqThGXzob5wXtasSbSmgD8JiJTJRy8fxObCb7CvZBdyay90SJkcFRSNQbFDpJUpS7NWYEzieKZM9qcHgGOhAAX8TiAuMggmkwX33LMOlVW6DuObfXkfHjv2Es6FZ+KRab9Hizqkw+uFKV/hYsaHXZooLEqklC/FoKJboTaFYtTIBDz77FzpF3kigQEvCvhKwF+CJ7bbbrzdcuMLWwZPfKEYAHWEvf8PRD/8IEwDs6Bdvw2WuPgeG7XIuCMy74hry9kKfHLwknRiubMrKzEc988bjMSIIOmblEhRbAnEk2IdQel0SLh2CYKOHELDr/8bDY885oyVr1OAAp0EqloqcaT8ADbkrcbBy/tQUJsHkUJdXNaUycPiRmJW6nwsylyGUQljoLbzG0zCUoACFKBA9wqIlMSRoWrs3VuKp57ea7fxcdUn8czBZ3AppB9+Pf1JNARFtpc7n/kuLg1Ya/e+qIYhGJH7ACKa0zq8/uori5CZGY3aJgPMAZb9sXtnN7Ba85fgiXXWuPLEyfNb2inSG1iPe+8abeRLzyHy6d9DP34iqr5cD0t4eI93MCRIibDgtgCKtqEVb27PRa7W/hkoaqUC101IwfLR/cVOHenMlLomPfj9qYtpNBgQd/stCNm8Ac233o7aV96QtjjxogAFPBcobijC4fL92Ji/FkcrDuJSfWGHlMmJImVywhjMTVuIBelLMCRuOFMme87NOylAAQp4JGDdHv7660exek1el3WMqLuA/znwRxwLG4zfzXyivdyJYS+iIr5j0CVYH4vBBXcguXK23fruvWcMrr9+CJpbjGjh1h2P5o03fVeAwRN5ngquPJHH1T9qtVgQ/aufI/y9t9Eyd4F0mCg0393f2VODDQ5SITxY1d58aa0OBVXNKKhsgraxFYMSIjAoKRxZiREIViulcmLFSYPOyMi+s0mzWBDzk3sR9un/oWXhYlT/6zNA3Ras4kUBCngvYE2ZvK90F7aIlMnaACK+HAAAIABJREFUIyhrLGlPmaySUiYPkFImL8hYjDlpC5EZ3b1nTHk/StZAAQpQoG8JRIVpoFYp8Otfb8OZs1UOO5/ZeAlNheWoCY6BcfAQqezB0Y9JB8OKS2FWIa3samRduhkqc8ftPbYVL1qYjocemiytom7UGfsWGHvbawUYPJFnahg8kce179dqNiN21fcRum4Nmm/+Pmr/+jagbAtA9KZLpVRAHOwlllk6usRqE3HGiU7PM07cmb/Ip55A5MsvQD9pipSSGqGh7tzOshSggBsCJosJ56vPSIfRbivciFOVJ6SUySLQIi6NSJkcmYZxSZOwaOAyzBgwhymT3fBlUQpQgALOBERWR7HY9u67v0GFtuN5J13dq869CIVeD8OIkdg24T4YQ2sRUzcSI3LvR1iL8/MBx45JxDPPzIHRJLaU89wTZ3PE110TYPDENSd3SzF44q5YIJRvbUX8zSsQvGcXmu65H3XPvtTrR61UKqBRKaBSKqXUcgqlAmazGWYzYDBZYPQgK0+vH3Q3dTDsrdcR89uHYRg8BJWbdsIScWVvbzd1gc1QIGAFRMrkU5XHO6ZMbqkGvg2oBKtCkBFtTZm8HNMGzGLK5IB9WjhwClDAWwFxWKy4rrvuP25lY1QVFcFQX4Wc217DmJL7kFQ91eWupAyIwBtvLOGhsS6LsaArAgyeXFGyHjprPXDWm/NTGDxx5ekLoDKKxgYp44rm7Bk0PPYkGn7xqwAaPYfalUDoRx8i5sH7YB6QCu3mnTAnJhGLAhToIQFryuScgg3YXbIdF6rPol5vkzJZHY6s2MGYIqVMvg7j+k1iyuQemis2SwEK9C0BETzR60248aYv3e74xcrtsKAEQxJuc+vemOhgfPjh1TBbLKht5MoTt/BYuEsBBk/aaKyBks4BE08DKAye8E3XLqCorkLighlQlRSj9tU3obv1dupQoF0geP1axN3xPViio6HdvBum9AzqUIACvUSgQV+PI5cPYlPBWuwr3Y282gtoNlw5RFukTB4cOwzTU2dj6cC2lMli1QovClCAAhS4IhAbGQRxRP4tt3wFXYt754+Uhh3AmdEvY+ZHNyE060aXWQdmRuOVVxZx5YnLYizoioC/BE9sUxVbx+1qymLbAAmDJ648NSzjsoCypBiJC2dCWV2Fmnf+hZYV17l8LwsGjoBm3x4kXLcUlqAgVG7eBeOQYYEzeI6UAn1MQKRMFhl+pJTJ5ftRWJeLVlOrNAqRMjk2JA7D4kdiduoCLMxcipHxo5kyuY/NMbtLAQr4ViA6XANxnt6PfrQeZeX2szh21WJx8nqcy3obKkMoZr17PTSjbnCpcxMn9MOTT86CwWRGQ7N7ARuXGmChgBTwl+CJN5PH4Ik3ery3SwH1hXNIyJ4DRYsOVZ+thn72PGpRoOvn5fhRJC5fBJhNqFy9CYaJk6lFAQr0EYFLDYU4VL4fm0TK5MsHcamhCEZz2zJxJZRIDE/CyPixUsrk+RmLpdUqSkXvOyy8j3CzmxSgQB8TiAxVS0kI/vSnfdi5q8St3p8b+A8U918n3aPRR+LVN5IQFD0JHw6+2WE9t9w8FHfeOVpKbNDcysQGbqGzcJcCDJ600djbtuPplh1RH7ftBPibTi0+CC+bD3G0eOXXG/lBOMCfB1eHr8rLReKimVA0NaP64/+gdUG2q7eyHAUo0IsERCafvNqL2FuyAzmFG6SUyeWNpd9JmTwmaTwWpC/BnPQFyIjK6kUjYFcoQAEK+E4gWKNEeIgamzYV4uX/PeRWxUdG/hHVMSfa74lpDsbhv7fiTPB8vDjmx9LP2vau556dh5Ej49GgM8JgNLvVJgtToCsBBk+uyHTe+uPqth97tgyeBPB7LmjnNsTftAKWkBApiwq3YATww+DB0KWtXtmzoazUcquXB368hQK9VUCkTD5XfRo7L23F9qLNUrYfbfPlDimTUyPTMb7fJGRntmX46R+R0luHw35RgAIUcFlAbNkRW3fq6/VY+YPVLt8nCu6c9ABag0U2tCtXbFM4jr3ZhFz1FDwz4WGYlaoOr4eFqvHJJ9dK+dNqGvRutcfCFHAkwOCJPM8Hgyc+dl1804+lGjd+9je7NYvXu3rNx11xWF3I6i8Re9dKmGPjpMAJD//sTn3/aUs6ZDh7NlRFhah78VU0r7rb68H1lveI1wNhBRTwIwGRMvlk5TFsv7QZO4q24mz1KdTYpEwOUYdIK1ImJk/FkqwVmJo8AzEhsX4kwKFQgAKBIhAVpoFapcCf/3wQOVuLXBq2UdmCbdNX2S0b1xiF42/Uo1wxAo9NfQwGpaa93MqVI7DythFoNZjQ1MItOy5hs5BLAgyeuMTkdiEGT9wm6/oGVz70uVLGh12yW9WVtLMp0G7exbSzcoP7ef1Seuurs6E5dQIN//UEGn75W69G3BveI14NgDdTIEAEmo1NOFFxBJsL12NP8Q5crBEpk+vbRx+uicDAmMGY1n8mlg26FuOSJkL8Gy8KUIACvVlArVIiKkyNmpoW3HvverTqnQc16sNzcWDcf3U5rLjGWJz8Wy2qLZn47fTfQ6cORUJ8KN56aynUGhVqG/Uwm8X6E14U8I1AoAZP7GXn6UrUk+07DJ745vmUanHlQ58rZXzYpe9UFfm/f0bkHx+HYdhwVK7dAkt0jJzNse5AEWhtRfxNVyN472403fUj1D33cpd7e52R9PR7xFn/+DoFKNC1gEiZfLj8ADYWrMGBsj3Iq7mAZmNz+w0iZfKQuOGYkTIHSwZejdGJ45gymQ8UBSjQ6wQiw9TQqJTYtu0Snn/hgNP+lSVux+khrzosF9eQgBN/rUWrOQG/mfEUHv3fazF8eBxaDWY0uZkW2WmHWCDgBQI1eGI78V0dDMsDY3vB28O6XcfaFevWnM7/Ll63fU383baMu1t63Lk3+je/QPg/3oR+0hRUfrEOCA3tBXLsgt8IGI2I/dEqhH79BXRXrZDOQYFa7fbwrMETd57tzo14c6/bHeYNFKCAQ4FKnRaHy/Zhff4aHL4sUibndUiZHBcSj+HxozArbT4WZizFCCllsvtfOzgNFKAABXwloBRnn4SpoVAo8Oabx/DV17kOq85N+wgFaZ9fKWNSIbQ+HYpgPZrDrmTtSahPwdG/ahETGgPVgX0wp6ahrlEvnXnCiwK+FGDw5EqmHXuungZQuPLEh09p59+Y2/sNuu2/2TsfxZ3furvSnjQ8sxmx992J0C8+g27JVah57yNAc2W/pQ8JWFWgC1gsiH74QYR/8A5ap0xDlQjSBQe7pdJt7wu3esXCFKCALwVEymSxMmVz/jc4WnEIxQ2XOqZMDuuHUQljMTdjEealZWNI3DAoYD9ThS/7xbooQAEKWAWs23fE/7/00iFs3lLYJc7xYS9AG79fej2mfgQUjZGoTTyG+QffhTZ+H/LSPkZzaJn0epZiMI6+XoMIgwKVqzfBMHgo0SngcwEGTxg88flD5esKXQlmdA6edF5p4k3wxO54xHaKW65F8O4daLrjLulQz65Spfnag/UFrkDk888g8tmnYBg+EpXrcmCJiHQZw1nQ0VlF7ryHnNXF1ylAge4RECmTc2suYE/pduQUbMAJ7TGUN5XCbGk7a0ClVKF/eArGJk7AgswlmJU6jymTu2dq2AoFAlogWKNCeEhbhpwvv7yIv7913K7HnvEPta8wmXz8GeiDanB8+PMYf+pRxNeNg0Vhhrb/dlwe/iUqWkowNWECcv5QiNDaBlSu2QzDxMkB7czB+16AwRMGT3z/VPm4xt4WPFE0NSFh2XxozpxCw0O/QcOjv/fxiFkdBboWCHv/H9IqFFNqGio37nD5YGIGT/hUUYACQkCkTD5bdQo7Lm3Bjks5OKU9jkpdhU3K5CCkRaVjfNJkZGdehWkps5AcPoB4FKAABXwqIDLvRIa2beEpLKzH+++fwr79batIxCUCIznTV0p/xtWOwYTTj8OsMCJnyirElU3D5JJfYOHCdNx22wjExKvx5uE38Ozu/8HIyKFY93QeQkrLUfX5Guhnz/Npv1lZYAsweNI2//a253i6ZUfUx207Pnxf9abgiZRCdvEcqAoLUPenF9F87wM+HCmrooBrAiGff4rY+38IS0wsKrbuhTkl1emNDJ44JWIBCgSsgDVl8tbCjdhZvBXnqk6jprW63SNEFYrMmCxMSp6GpQNXYHL/6YgO5sHoAfvAcOAU8JGAOANFBFBUyrbtg3l5ddi5sxgHD5bjRPkZ7J3wC+nfxaqT6MbB0t/PjH8ONeFncfLOYgzo35ZpzGi2oKHZgGZ9M/5+7FWcrziOfz59EiHnLqDm3X+hZcV1Puoxqwl0AQZPrjwBnTPweJJlx1qbW8ETdxt2VL6rNELWwZRW6frcM+8seNL5LAd3PiSqz56GcfjIDiZdtacsKUbiollQVmpR8+Z7aLnxlj5nyQ77j0BwzibEff96WMLCpBUoxiHDHA7O+lzbPvPubMVx9j70H1mOhAIUEAIiZfLxisPYXLAOe0pEyuTzEFl/rJdIj5wVM0RambJs4DUYmzSBKZP56FCAAh4JhASpIP77NoYi1bH6wte45d83YE7yYvxt7v8hNjYEcXEh+PDE+/jR6ruRc8d2TBkwE7pWI/RGc4d261prka89g+y7H4Hm8EHUvvomdLfe7lHfeBMFbAUYPJHneXA5eOLukhdn5Z0tl/GH4ImYss5ZP+wdGGs7tfay7YjtN+HvvInGBx/6zlPQuX5VXi4SF86AorkZ1R98gtaly+V5clgrBdwQ0Ozbg4Trl0nn7WjXbYVx7Pgu77a+R8L++R5a58yHKT3DpTTgthUy244bk8OiFPBDAfGB5EjFQWzKX4P9pXuQV3sROpuUyWI1ypDY4ZiZOlfa8jMmaTyClO4dbu2HbBwSBSjgooDYyiPOQ9GoFXhx73N4fOuj2HfPIYxNGtdeQ21LPVJeTsD1Q2/BK4vfcVyz0Yi4O76HkI3r0PDYH9Dwi1+72BMWo4B9AQZP5HkyGDyRx9WlWl39bXrYe29D2dSExp/83GG96uNHkbh8IWA0ovLL9TBMm+FSP1iIAt0hoD59EglL50Gh16Pqs9VO9/aGfv4p1BfOoeGRx7qje2yDAhTwcwGRMvlg2V6sz1+NI+UiZXIB9OZWadQik098aIKUMnl22gIsyFgipUxWKdoOiuRFAQpQoCuBhzbdh3p9Hd675hOpiNkCWMziGGxg3j8noKyxBOfvr3AOaLEg5qf3IuyT/0PTD+5E3ct/ZZIH52os0YUAgydXYNzdPePooerR4EnnjtnuP+qLK0/cffc6Cp7Y/ub8X0fW4ot+g/DJgCvbHTqvUAnauQ3xN10DS5BGOrXb0W/23e0ny1PAVwLSyqglc6Goq0XNO4739oasW4OYX/0c5Scutv/wYPu+sNcneyu3fNV31kMBCvifQFFDAfaX7MGmwrU4fvkwSkTKZItRGqhSoURSWDJGJY6V0iXPTV+EwbFDmTLZ/x4DjogCXgms+HQuXs7+OwbHfndb8quH/oz/2fM4Nt66DyMTxrjUjshWKLIWtmQvRfW/PgOUSpfuYyEK2AoweNKm4Ww3jLtPTY8FT+x11HZwgRA8cWWy1BfPI2n6eNS89nfovv8Du7cEr1+LuNtvgSUyEtpNu2DKGuRK1SxDgR4RUJaXSYcZK8tKHe7tDd62BfE3rUDlf9ZCP2d+j/SVjVKAAoElIH5XLM5M2V28DeJQ2pOV1pTJbecUqBVq9I9IwdikiViYsRQzU+cgPWpgYCFxtBSgQAeBX2y6Dy9nv2lXpaalCqPfSsPKUXfh+QWvuSxnzVionzodVf/5BgjmtkKX8VhQEmDwRMZUxV0d3irgratB3I3auFu+c2SIwZO2d37UHx5DxCsvolr8lv6a67/z5SD0ow8R8+B9MCf1g1akg3Uhmwm/plCgpwXEypOExXOhybuIhseeRMMvfvWdLgXt34uE5Quhu+U21Pzt7Z7uMtunAAUCVECkTD5TdVJKmby9aAvOVJ1AZbO2PWVykFKkTM7AhH5TkD3wKkztPxP9wvsHqBaHTYHAEqhoKpe27NhbdWKVmPreMLQaW3DsnkK3cKSMhffdCePQYajcsB2WiEi37mfhwBZg8ETG4Ikrj5a7wRB3yzN4YmcWzGYkjxwoZc2p+ug/aM1e2qFQ2FuvI+a3D8OYkSkFTixx8a5MJctQoFcIiIOQ42+4CkGHD6LpnvullNriQFnrpTlxDIkLZgAhISg7dwmW8PBe0W92ggIUoIA4K+VkxTHkFG3ArkvbcK76DGptUiaHqkORGT0Ik5KnY9mgFZjYbypTJvOxoYAfCpgtZmmLn6Pr6V2P4q9HXsK+O88iNTLdLQUpY+H3roM5uT8qtu3jz/pu6QV2YQZP+kDwxDZg4ix44uz1QFt5IvLHqxQKmMxmWMRBUwCCN3yD+JU3Se98cQCsftac9q8CUX94FBGvvAT9mHGo+noDo9GB/fWx747eYEDcbTciZOtm6K6+VjoHxbq3V33xApKmt51aX/viq2hedbf0d5VSIcVYxPvEbLFIf/KiAAUo0NMCTYZGHK84gk0Fa7G3dBcuVp9Do6GhvVsRmkgMih2CaQNmYWnWCmnrT5iaQeGenje2TwG5BYobijDtveH48cSH8NjMp91uTspYeN1SmKOioM3Zy1XmbgsG5g0MnrTNu7OYg7tPh8tnnlgbt23A9oBXe51zdrKto9f9PXgigiWhQSqIVGfiw2CHSwRRTGYEff8WaL76QnpJrCwxTJgEmM2IeeAuhH3+KVpnzkbVp19zH6S7Tz3L9y4B8Uz/7D6EffwvtM6ai6pPvpSeaVVJMfqNGyr11Th1Olq27pDeL50vsxkwmMxoMZhgMjGS0rsml72hQGALSCmTLx/Ahrw12F++BwVSymRdO0pMcCyGxo2QUiYvyliG0UnjmDI5sB8Zjt5PBca+nYEQdSj233nWoxGKjIWJi+fColJBu3Uvzzf0SDGwbmLw5Mp8O4tJuPNkuBU8cadib8v6c/AkLESNEE3HJX6tRjNKa3VIjQ2FRqUEamsRktofMBgkyopdh2DMGoz4W65F8M5t0F13E2reeAdQq72l5v0U6BUC0Y88hPC334Bh5GhUfpMDRWsLkoemtfet9dxFWDIzYTRbUFzTjH5RIQjVdEwj2mowoanF1CvGw05QgAIUsCdwuakMh8r3Y0PeahyuOIBL9QXQm/RS0baUyYlSyuS5aQsxP2Ox9HemTOazRIG+LfCbnAfxz1P/wMl7LyE2xLNt9lLGwuxZULS0Qrsuh5k1+/YjIXvvGTyRh5jBE3lcu6w1MkwDzbe/PS+qbsbms5eRV9GEktq230SJRShpcWG4dtu/MeOVP7bX03DgGILv/SGCjh2xez5ENw+DzVFAFoHIl19A5FNPwJgxEM0bNiNqWFZ7OydufwCf3PgTFFY1SwEUcSVHhWBQYgTmDk3AkH5tB6mZzBbUNxth4X4eWeaIlVKAAr4XKKrPl7b6bM5fh+PawyhtLIbRfCVlcr/wZIyOH4d5mYsxJ3WhtP1HBFp4UYACfUPgVOVxLPloOv5rxpN4cNJ3D8l3dRRSxsJ506CsrUHVZ6uhnz3P1VtZLsAEGDyRZ8IZPJHH1W6tkWFqaVWJOKdhzfEyfHWsVPqgZ+/60x/vQHrxxfaXzEOHQXn+HBr+6wk0/PK33dhrNkWB7hWwZpBCejoURUXtjddFxuInz30Ni7LjahNRQJyBsmRUMm6amAq1UpwdxABK984aW6MABXwpIFImX6g+h10lW7GtcBNOao/hcnMZxOGU4hIpkwdEpmKcSJmcuQzTU2YjPTLTl11gXRSggI8Fhr3RD8kRA7DtB0e8qllRXYXE7NlQXSpC9YefonXpcq/q483+KRDIwRNHmYRtZ7vzESSuPAkMnrii5IMyYcFqhAQpIbbnvLD+LHK1TV3WmnHpPP7nqTu/87rxV79G4/W3oDUoFJawsLb/RNoypeNTvn3QfVZBAfkEzGYomhohsu8odDoE6XWI2LIemicebzsV1ub6089ewvHR07vsy4DoUPxq2TDEhGqgN5rRqGv7zS0vClCAAn1dQKxEOVt9CtuKNktpk89UnkCVrrJDyuT06IEY328ylmQux7SU2UgITezrw2b/KeAXAotv+jHKBx9AdcoZDNt5K1SmIGlcGz/7m0fjEz8zJSydB/XZ06h99U3obr3do3p4k/8KBHLwxNmsWoMrDJ44k+qh18WBsNHhGqn19/cUYOs5rcOerPr4JSzb8onrvQ0KgiUsHJbQUBizBkF3/c3QrbgO5sQk1+tgSQrILKCoq0Xomq8Q+p9/Q33ujBQoUTY3Aa2tLre8d9Ii/OW+pxyWH5MajYey2w6aFdt3jKa239TyogAFKOBvAiJl8omKo9hSsB67S7bjvJQyuaZ9mKHqMGRGZ2HKgBlYNvBaTEyegsigKH9j4Hgo0CcEDpTtwfWfLcLzC17DylF3QQRUPA2eSANubUX8zdcgeM9O1P/uaTT+7KE+4cBOdo8Agyf2ne1l33FnRrjyxB0tD8tGhqqhUStxuqweL6w/57AWlcmI13+1HOHNV9IbOrxBo4FeZCJZtET6zzhqjIe95G0U6D4B9cXzCN68ESGbNyB49w6gpcWlxk0qNe5/YS2aw9rON+nqumtWJuYMSZS279Q1tR26zIsCFKBAIAiIlMnHKg63pUwu2Ync2gto1NukTA6KxOCYoZieOhuLM5czZXIgPBQcY7cJiICI7WUbHBHb8bL+FofhcaNg/GRMh8CJNZBie79LgRWzGbGrvo/QdWvwrwHD8fSQaVLzLt3bbSpsqCcEGDzpqO7NahPbmhg8kflpFmcxxEYGS9sPnlt3FmfLHQdFph7agl+8+ajDXllSU6Fb2BYsaZ23EJaICJlHweopIKOATidlkBKBlLAtG6HIy3XY2Lu3/hIbFtzssEz/6BA8fUNbIFEET7o6W0jGUbFqClCAAr1GoLalBkcrDmJd/tc4WLIX+fW5aLFNmRwSh2Gx36ZMzlyG0QnjoFG1bSvgRQEKuCbgykqSlV9dK227G5azEpv+/WZ7xdagiW3Qw5X6pAosFmwdNwkrS89KK89r/vFPLL7lpwyguDZtfluKwZO2qfVV0MT6oDB4IvNbJkitRESoWvrw9pN/HobByRaC37zyS4w/ubtDr8Rv288OHofz42dh+SN3wzJqNOqbDTCa7B82K/OQWD0FZBEQmaZiIoKguHgBG//8LtL2bcOI80cQZOi4rSc/fRgeffRdp334y20TEBGsRnOrCS16pi92CsYCFKBAQAmUN5XiYNlebMhfi6OXD+BSQ2GHlMkJYYkYET9GSpk8LyMbw+JGMmVyQD0hHKy7Aq4EO3IKN+D2r6/H28s/xrKsazoETzqvFnGlPmsFouzeOVmIfOp3aJ02E1VffANo2o4M4BWYAgyetAVOPDnXxNETw+CJzO+nsGAVQoJUOHe5Ac9+c9Zha5ENNXj911dDYbGgMi4Zx0ZPx9FRM3By+GS0hoRJ9z5701gkRgajqdWEVn4glHn2WH13ClgDjS1GM376z0PSWbEafStGnj+Mcaf2YvzJPUiuuCR16Zd/+AhlyRkOu/fAvEGYOjAOLQYTmlsYPOnOuWRbFKBA3xQorM/DnuKdyClcj2NSyuQSmNpTJquQLFImJ47H/PTFmJU6nymT++Y0s9cyCjjbdmOymJD5v3GYnjEDn96wzqfBExF8sWYsFNv4K9dugSU8XMbRsureLBDIwRNfrzaxnWcGT2R+6q3Bk9XHyvD5kWKHrY3L+QppdZdxdMpCFKcMslv2ntkDMWtwAn+bLvO8sfruF7AGT06W1uHFDeftdiBJW4wJB3NQb7Bgz7WrHHZy4fAk3D49A60GM5pamHWn+2eULVKAAn1dQKRGvlhzDjuLt2Jr4UacqjyOiqZymPFtymSlGikRaW0pkwcuw/QBs5EW6Tiw3ddN2H8KuCpgb+WI+Lewledw9PIh5P24un01V1dlXT27xPb+kNVfIvaulTClpkG7eRcscfGudpnl/EiAwRPnk+nJqhQGT5y7elUiNEiF0GAVcs5W4IO9hQ7rUrS2wBIc4rDMzxcNwfi0GOnDoPhQyIsC/iKgUSkQGaZBQVUTnvz6tOP3isEAi5PlqNeMG4AbJqQweOIvDwjHQQEK9AoBkTL5TNVJbCvahB1FW3Cm+hSqbVMmq4KREZWJCf2mYEnWCkwdMBPxIQm9ou/sBAW6U6CrgMiPn5mHn228Gx9fvxazU+dLXfJl8ETU9+ii6/GPE5tgjo2Fdtt+mJP7d+fQ2VYvEAjk4Imc/AyeyKkLIFijRHiIGrnaJjy9xvEHQle68ufvjUNsWBAadEYYjAyeuGLGMn1DQK1SICpMA6PZgvs/OCht2/HmenDhYExMj4VOb4aulStPvLHkvRSgAAUcCbSaWnBCexSbC9ZhT8kOKWVyXWtt+y1hImVyzGBM7T8DS7OuwYR+k5kymY+U3wk4yrRjGyDRGXUY8kaClO3qnas/bQ+edAZxddWJ9b7OW4Y0hw8iYUU2LMHB0G7eDVOW/VXtfjcRHJAkwOCJPA8CgyfyuLbX6ssPhGIVy2srJ0p11zTqvf5wKfPQWT0F3BaIi2zL7vDElydRXKNz+37bG567eRwSIhho9AqRN1OAAhTwUKBRpEy+fAgb89dgX9lu5Nach0ijbL0ig6IwOHaYtNVn8cCrpJTJoeq28914UcDfBbI/moaC2lxcfKBSGqo7h8O6Y6O+cA4Ji2ZBYTJB+00OjGPHu3M7y/ZhAQZP5Jk8Bk/kce1Qq8ggIjKJvL+nAFvPaT1u8cYJqVgxrr/0m/n6JoPH9fBGCvRWgchQNTRqJXZc0OKdXQUed3NMajQeyh4q3V/doPe4Ht5IAQpQgAK+ExApkw9f3o91eatxqHwvCuryOqRMjhUSTb0DAAAgAElEQVQpk+NGYlbaPCxMX4pRCWOZMtl3/KypFwm8few1PLHj11h9y3ZpJZaj4EnnFS2dh+FshYqqqBCJi2ZCUV+Pyq82wDBtRi+SYFfkEmDwRB5ZBk/kce1Qq8i2Iw6OFVlEHv/PCVQ1uf9hLi0uFL+7ZrQUhGnUGaHnlp1umDk20d0CapUSUWFqqdnn15/FmbIGt7sQHqzG09ePQVSoGi0GM5p5WKzbhryBAhSgQHcJlDWWYH/5HmzKEymTD0kpkw3mtp+TFFAgMSxJSpk8J30h5qdnY2jcCKZM7q7JYTuyCTTo6zH8zWTcPGwl/nfxW7K1Y61Yqa1A4vwZUFaUo/rDT9G6dLnsbbKBnhVg8EQefwZP5HH9Tq3W1Sdnyurx/PpzbrWqUSrxh+tHITkqhKtO3JJj4b4oEBGqhsi8U6sz4NHPT0BncC/N8H1zB2F6Vpy0ra22idvb+uIzwD5TgAKBLVBQlyudnbKlcAOOVxxBWWMxRIpXcSkVKvQP7y+lTF6QsQQzU+chK2awFGjhRYG+JDDrg9Go0lXi7H3l3dJtRV0tEpbOg/riBdS8+R5abrylW9plIz0jwOCJPO4Mnsjj+p1aVSoFosM00r+fKK7DP3blo07nfOuNOLPh/nmDMSgxHGaL2K5jlP7kRQF/FVAoIL1XlEoFSmt1eH1brkvnn4QFqXD7tAxMHxQPKBSob9LDaOJ7xV+fE46LAhQIHAFryuTtl7ZIWX5OaY9D23zZJmWyBqmRImXyJCzKXIZpA2YhNTI9cIA40j4p8MK+P+KlA/+DrT84jCGxw7tnDDqddIis5tgR1P3pRTTf+0D3tMtWul2AwRN5yBk8kcfVbq0atQKRoW0BlGa9Ce/uLsDBguoue5A9oh9umZwKjUoplWloNsJgYoadbpwyNtVDAiLYKDLviN8jmswWfHWsFGuOl8LcRSxk1IAo3DM7CzHfBiiZyruHJo7NUoACFOgmAaPZgNNVJ7G1cCN2FOfgXJVImVwFC9q+UQSrgpEeNRCTkqdKKZMn95/OlMndNDdsxjWBy01lmPjOIPxo/IN4Zv4L0i+NAIv0s47ZDBjl+pnfYEDcD25GyJaNaPjZQ2j43dOudZil+pQAgyfyTBeDJ/K4dlmrOAxTHIppvWqa9civbJJSGZfU6JAeH4rBiREYlBSB8KC2cmKliQiciA+RvCgQKALihwgRQJF+lgCk7Tu52kbkaZuk//pHB2NQYgQyEiKQGNGWpUdcPBMoUJ4QjpMCFKBARwGRMvm49gg253+DPSU7caHmbMeUyZpwDIwejGkDZmDJwGswXkqZHElGCnS7gPjRJiRYhdnvT5R+UXTw3mN2+6A3mKWff0y+XklrsSDmgbsQ9tkn0F17I2re/kBatcvLfwQYPJFnLhk8kcfVYa3iw2BosBrBQSo4yjcsQiWt4otmi/Hb36P0QGfZJAV6UEChUCAkSAlx6LKzb+niEGVdq4lBxh6cLzZNAQpQoLcJWFMmbyhYjX0lu5BXewFNhqb2bkZJKZOHY0bqHGnLz9jECUyZ3Nsm0c/6o1YpEPnt6tpndv0Rz+9+FgfvzoO2To36FgOGJEUgLS4Mautvj8QvkPQm6WccX1+RTz2ByJdfQMvcBaj++AtA07ZCnlffF2DwRJ45ZPBEHleXahUfBtVqpbQtR6lsC/iKZXpipYk4q0Es1+PxJi5RspCfC4j3hkqp+Pa9opCWtlosFilQIn4bI7az8b3i5w8Bh0cBClDARwI1LdU4VLYP6wtWS38WipTJphapdnHwrJQyOX4kZqXMx8LMJRgZP4Ypk31kH+jVBGmUiAhpW1neYjDh3b2n8Nc932B03AyEqEPbeUTgZHBSBFZOy0BqbNu/i1+oim3Jvr7C3nodMb99GPrRY1G1ZjMs4eG+boL19YAAgyfyoDN4Io8ra6UABShAAQpQgAIU6CMCpY3FOFC6GxsLvsHRikMorhcpk9sO9lcolEgMTcLIhDGYl74Ic9MXYWjsCCgVbWfS8aKAKwLil0DR4W0rOy5WNOKNbbmoatLjfPUZKXCSHpX5nWrEPTdMSMGy0clQKhSyBVBCP/oQMQ/eB1N6BrQ5e2CJjnFlSCzTiwUYPJFnchg8kceVtVKAAhSgAAUoQAEK9GGB/LqL2F2yAzkF63FCexRljSXtKZNVChWSwwdgTNK3KZNT5mIgUyb34dmWt+si8BEd0XYQ/r78ary5Pbd9xWxtSzVyay9gUvK0LjsxPi0GP180RHpdrrPdgtevRdwd34M5IQHaLXtgTu4vLwprl1WAwRN5eBk8kceVtVKAAhSgAAUoQAEK+JGASJl8ofosthVvxvbCzThVJVImV8BiacuEqFZqkBaZLqVMXjzwKkzpPxMpkWl+JMCheCoQHqJGsEaJWp0Bj35+QjoE1vYSKbhnps6DRtn1mSN3zcrEnCGJUjae2ka9p11xeJ9m3x4kXLcUlrAwaDftgilrkCztsFL5BRg8kceYwRN5XFkrBShAAQpQgAIUoICfC4iUyacqTyCncAN2FW/F2arTqGmxTZkcgozogZjUbxqWDroGk5OnSWeq8AocAXFOW8y323Ve2HAOp0vrvzP405UnEBMSiwERqV3CBKuVeOqGMYgPD5LOPhFnoMhxqY8fReLyhSJrMrQbt8M4crQczbBOmQUYPJEHmMETeVxZKwUoQAEKUIACFKBAAAq0mHQ4XnEEmwvWYU/JdlyoPod6fV27RJg6HINih2DqgJlYnHk1Uyb7+TMismuGB6tQXKPDE1+etDvaSp1WOmdHpM92dK0Y1x83TkiVDspvaPb94bHWtlV5uUhcOBOKFh0qv1wPw7QZfj5L/jc8Bk/kmVMGT+RxZa0UoAAFKEABClCAAhSQBBr0DThWcQjr877G/rLdyKu9iOYOKZOjMSRuOGakfJsyOWkCQlRXsq+Qse8KWLfsbD+vxbu7C7ocyJbC9ViQvlg6oLira+SAKPxqyTCxKAQ1DfJs3bG2rSwpRuKiWVBWVaL6ky/RuiC7705CAPacwRN5Jp3BE3lcWSsFKEABClCAAhSgAAW6FBApkw+U7cH6vNU4XL4fhfX5aO2QMjkew+NHYnbaAsxPX4xRCWOkc1V49S2ByFA1NGol3tmVjx0XKrvsvDiUOCmsH/qFd31Qa2iQCq+tnCjVUS1z8ES0oaiukgIoqktFqHnzPbTceEvfwg/g3vpL8GTU/B92mMVTW9/t0Vll8KRH+dk4BShAAQpQgAIUoAAF2gRKGi5hX+kubC5ch6OXD6Gkoag9ZbJIjZwYloRR8eMwL2ORFFRhyuTe/+REhWmgVinw9JrTyNU2ddnhRn09Gg2NUhYnR9dzN49DQkQQ6poMMInTY2W+FI0NSFi+COrTJ1H3pxfRfO8DMrfI6n0h4A/BExE46RwssfdvvvBytQ4GT1yVYjkKUIACFKAABShAAQp0o4AFFuTXXsTu4u3YUrQBJyuOoryptEPK5P4RKRibOAELMpZgRuocDIwe3I09ZFPOBKzBk7d25GF3bpWz4g5fVykVeOOOyVAqRMYdA8wW+YMnUodaWxF/w3IE79+DhocfQcN//86rcfBm+QUYPJHHmMETeVxZKwUoQAEKUIACFKAABXwuIFImn685g62Fm7Dj0haITC1a3ZWUySLdbVpUBsYnTUa2lDJ5hsMsLj7vICvsIBARokaQRokNpy/jo/1FXukMTAjH4ytGSnV0x7adDp01GhF79+0IXfsVmr93G2pfewtQKLwaD2+WT4DBE3lsGTyRx5W1UoACFKAABShAAQpQoFsEDCY9TledwOaC9dhdvA1nq0+jtqUaYuWKuEJUImVyFib3n46lA1dgYvJUpkzulpkBQjRKhIWocba8Hs+tO+dVq/OHJWLVjEwYTRbUNxu8qsujmy0WRD/8IMI/eAct8xeh+v8+BzQ8h8cjS5lvYvBEHmAGT+RxZa0UoAAFKEABClCAAhToMQFryuSN+Wuxt2QHLtScQ4O+vr0/4ZoIDIoZgqkps7A4c7mUJjdCE9Fj/fXXhpVKBWLCNTCbLXjiq1MordV5NFRRz5PXjsKAmFA0t5rQojd5VI8vbop8/hlEPvsU9GPHo3LNZiCUmaF84erLOhg88aXmlboYPJHHlbVSgAIUoAAFKEABClCgVwmIlMlHLx/E+vyvsL90D/Jrc9FsvHKIaXRwDIbEDsfMlLlYOHApxiSOZ8pkH8xgRKgaQWolCqua8MfVp+HJOa8rxvXHjRNSIY45qW3SS3/25BX2/j+kVSjGrMGo3LgdluiYnuwO2+4kwOCJPI8EgyfyuLJWClCAAhSgAAUoQAEK9HqBqpZKHCjdgw35a6SUyUVSyuRWqd8KKBAXEo/hCaMxJ3UB5mVkY2T8aKZMdnNWlQoFosLVEH/++1Ax1p4oc6sGsdpErDoRq08aW4zQG8xu3S9X4ZDPP0Xs/T+EOakftFv3wpyYJFdTrNdNAQZP3ARzsTiDJy5CsRgFKEABClCAAhSgAAUCQaC4oagtZXL+NziqPSylUDaa287YUEKkTO6H0YnjMD89G7NS52NI3HCIVMq8uhYQ6YpF5h2xfeebk+X44miJS6mGRw6Iwo/mZCE6VIMWgxnNLcZexRycswlx378elqhoaLfshik9o1f1L1A74w/BEzF3IjWx7dU5dXF3zy+DJ90tzvYoQAEKUIACFKAABSjQhwSsKZN3Fucgp2AjTlYew+Wmsg4pkwdEpGJs0sS2lMkps5EZPagPjbB7uiq27ogtPOIqqmnGW9vzUFxj/wyUYLUSt05Nx7yhiVJ5vdGMRl3vCpxY1TT79iDh+mWwqDWoXL8VxpGjuweUrXQp4C/Bk942xQye9LYZYX8oQAEKUIACFKAABSjQywVMFhPOV5/B1qJvUyZrT6BSpEz+NsOPRhkkpUyekDQZi7OWY3LydPSPSOnlo5K/e2qVEpFhaliT/NY061Fe14KK+lY0G4zSgbCJkcFIigyGWtm2mkccDisOie3Nl/r0SSQsnQeFwYDKtVtgmDi5N3fX7/vG4Ik8U+zT4Imny2rEfZ2X4JRWeXYStTxMrJUCFKAABShAAQpQgAIUcCQgUiafqjyOzYVtKZPPVZ1GTWt1+y0iZXJmzCBM7j8Dy7JWYELSFMSExAYcqgichAarEKxRQWGNothREKtNdHoTTKYePh3WxRlS5eUicfEcKBrqUf3xF2hdkO3inSzmawEGT3wt2lafz4In9gIg9v7Ndhi2wRYGT+SZYNZKAQpQgAIUoAAFKECBnhLQGZtxXHsEG/LWYG/pTuTWnP9OyuTBsUMxdUBbyuRx/SYFVMpklVIB8Z84DBawSJl4zGbAaOodh8K6+9woy8uQmD0b4s+aN99Dy423uFsFy/tAgMETHyDaqaJHgyfW/nDliTyTy1opQAEKUIACFKAABSjQ2wQa9PU4cvkg1uV+hQNle5FfdxEiyGK9RMrkobEjMDNtHhZmLJFSJgerQnrbMNifLgQUdbVIzJ4DVX4u6l58Fc2r7qZVNwsweCIPOIMn8riyVgpQgAIUoAAFKEABClDARQGRMnlfyU5szF+Lw5cPoKi+AHrblMmhCRgRPxpz0hdiXtoi6e9qZdvhq7x6n4CiqQnx1y9D0JFDaPj1f6Phkcd6Xyf9uEcMnsgzuQyeyOPKWilAAQpQgAIUoAAFKEABLwQuNRRib8lObC5Yh2MVh1HaKFImt2WcESmTk8KTpZTJ89KzMTt1PgbHDmPKZC+8fX6rwSClMQ7ZnoPmW29H7StvwOEhLz7vQOBWyOCJPHPvUvCk80Gwtl2xnlXiyZkn1nq4bUeeyWWtFKAABShAAQpQgAIU8BcBkcknr/Yidlzagq2FV1Immy1t54OIlSgiZfKYpAlYlLEM01NmISMqy1+G3zfHYTYj5if3IuzfH6Fl6XJUv/cRoOaKIbknk8ETeYRdCp640jSDJ64osQwFKEABClCAAhSgAAUo4CsBkTL5XPVp5BRsxM5LW3Cm+iQqm7UdUiani5TJyVOxJPNqTOo/FcnhA3zVPOtxUSD6kYcQ/vYb0E+agsov1gGhoS7eyWKeCDB44oma83u6NXjSVfYdrjxxPlEsQQEKUIACFKAABShAAQo4F7CmTN5U8A12FW/D+ZozqG2pab8xRB2KgdGDMGXADCwZeHXApkx2LunbEpEvv4DIp56AYfAQVG7aCUtEpMsNLL7px1LZjZ/9zeV7ArkggyfyzL7Pgieie52393ROP9w5SGJvO5D1ntIqnTwjZq0UoAAFKEABClCAAhSgQEAJNBubcKLiCNblr8a+kl3IEymTDQ3tBhFBkRgcMxTTUmYjO/MqjEuaiHBNREAZdcdgQz/6EDEP3gdTSqoUQDEnJjltVgRO7AVNrAEVBlW+S8jgidPHyqMCPg2eeNSDLm5i8MSXmqyLAhSgAAUoQAEKUIACFLAVECmTD5Xvw7q8r3GobB/y63I7pEyOCYnF0LgRmJUyDwsylkiH0zJlsvfPUMjqLxF710pYYmKg3bwbpvQMh5XaC550FVDxvnf+UQODJ/LMI4Mn8riyVgpQgAIUoAAFKEABClCgjwlU6rTYV7oTG/LW4kjFAVySUibrpVEooEB8aCJGJozGnLSF0n9MmezZBAft3Ib4m1bAEhyMys27YBwyzG5FtqtLRAGxAsVZ4MT6ujcrU7y51zMR397F4IlvPa21MXgijytrpQAFKEABClCAAhSgAAX8QECkTN5dvB1bCtbhuPYIShuLO6RM7hfeX1qVMj9jMWamzMOQuGFSoIWXYwHN4YNIuGYxYLGgcvUmGCZO7jKAYrttp3NAxRpUsd5s73wUZwEX24Y7l3Xn3t4y5wyeyDMTDJ7I48paKUABClCAAhSgAAUoQAE/FBApk3NrLmD7pc3YVrQJJ7XHUNFcDtuUySkRaRibNBHZmcswdcBMpEcN9EMJ74ekvnAOCdlzoNDpUPX5auhnz/tOpa4EM2zLeLvNpy8GSzqjMXji/bNprwYGT+RxZa0UoAAFKEABClCAAhSgQIAIiJTJZ6tOIadwA3ZeysGZqpOo0lW2p0wOUgVJAZSJ/aZgSdYKTOg3mSmTv302VEWFSFg8G8rqatS88y+0rLiuw1PD4In7byIGT9w3c+UOBk9cUWIZClCAAhSgAAUoQAEKUIACbgiIlMknK49hY/5a7C7ZjgvVZ1HbeiVlcqhImRwzGFP7z8Tigcsxod8URAfHuNGC/xRVaiuQuGgWlKUlqHvxVTSvurt9cM6CJ4rmZmTf8cv2jDxceQIweCLPe4PBE3lcWSsFKEABClCAAhSgAAUoQIEOAiJl8vGKw1KGn/2lu5FbewGN+ispkyM1kRgcNwzTU2ZjUcZVGJs0IWBSJivqapGwfBE0586g4b9/h4aHH5HsnAVPQj/+J2Z/slO24Elf3MbD4Ik8X3gYPJHHlbVSgAIUoAAFKEABClCAAhRwKlDXWiulTF6fvwYHy/aioC4XLUZd+30xIXEYFjcSs1LnYUH6YoxOGocgZbDTevtkAZ0OCTdchaCD+9F0149Q99zLWHzzT9oDI9Yx2R4a+6PC4/jBW6/AMH5ie7Cl89htD5x1xYXZdlxR6ljm/fffl/5h1apVbt/8wQcfwGKxeHSv2415cQODJ17g8VYKUIACFKAABShAAQpQgAK+FhApk/eUbJe2/By5fBDF9YXQm6+kTE4IS8LI+NGYm74Is9MWSCmTVQqVr7vRM/UZDIj94W0IXb8WuqtWSOegQK3usi/hr78KdX4u6p59qT144m6wpGcGKl+rXHkijy2DJ/K4slYKUIACFKAABShAAQpQgAI+EyhqKMDuS9uwuXA9TmiPoKyhBEaLUapfqVBKB9CKlMkL0pdgRupcDI4d2ndTJlssiH74QYR/8A5ap0xD1RfrgGD7q23C3nsb0U8+jrKzhYBG851tPrYTYC/Nse3r/hJ0YfDEZ2+7DhUxeCKPK2ulAAUoQAEKUIACFKAABSggm4BImXyx5ryULnl70WacqjzeMWWyQo2UyDSM6zcJ2ZlXYcqAGUiPzJStP3JUHPnU7xD58vMwjBiJym9yYImI/E4zoZ/+H2J/fA9q3voAuutvkqMbfa5OBk/kmTIGT+RxZa0UoAAFKEABClCAAhSgAAW6VUCkTBZpkrcUrseuS1txpuoUqm1TJiuDkRE9EBOTp2LZwBWY2H8aEkITu7WP7jYW9tbriP7twzClpqFy4w6YE5M6VBGy+kvE/fA2tC5agqqPv3C3er8sz+CJPNPK4Ik8rqyVAhSgAAUoQAEKUIACFKBAjwvoza04WXEMGwrWYE/xDlyoOQtxSK31ClWHIStmMKaIlMlZyzEhaXKvS5kc8vmniL3vTlhi41CxdS/MKant/Q/evAHx378eUCpRfvwCzMn9e9y8pzvA4Ik8M8DgiTyurJUCFKAABShAAQpQgAIUoECvFGgyNOJ4xRGsy/sK+8t2I7fmAsS/Wa/IoCgMjh2GGSlzsChzKcYmTUSYOrxHxxK8fi3i7vgeLGFh0goU45BhUn+Cdu1AwnVLpb83PP4kWn/5G6hVCigUCiiVCimLi8lsgclkgcFkhsXSo8PolsYZPJGHmcETeVxZKwUoQAEKUIACFKAABShAgT4jIFajiFTJ6/NX42D5XhTW5qHF1NLe/1gpZfIozE6dj/kZ2RidMA4aVVC3jk+zb09boESphHbdVhjHjofmyCEkLp4j9cOSmYnWcxe77pNCgVa9CbpWI8x+HERh8ESex5LBE3lcWSsFKEABClCAAhSgAAUoQIE+LXC5qQx7S3dKKZOPVhxCcX0RDJ1SJo9KGIu56QsxO3UBhsePkj1lsvr4USRcvQgKvR5Vn62GIikJ8TMntTvXrM/BuUFjkKdtRFF1M1Jiw5CVEI5BieGICWsL9ojVJw06I4wmc5+en646z+CJPNPK4Ik8rqyVAhSgAAUoQAEKUIACFKCA3wkU1edjZ/FWbCnYgJPaoyhtKobJbJLGKVIm9w9PwZjE8ViQuQTTB8zBoNghPk+ZrMrLRWL2LCgaGmH4y18Q9LMH251zZl+Lv9/xX3bdpw6Mwx0zMhAepJZeFwEUg9H/AigMnsjztmPwRB5X1koBClCAAhSgAAUoQAEKUMDvBUTK5AvV59pSJl/ajFPa49DqLsNsaQtKqJUapEamYXzSZGRnLcek5Kk+SZmsLi1BwjXZUBQWQmGjrAsJxwMvrIFBE2zXPjpUgx/NzcLI/lHSCpR6nUE6D8WfLgZP5JlNBk/kcWWtFKAABShAAQpQgAIUoAAFAlLAaDbibPUpbM5fJ61SOSdSJrdUQQRaxBWsEimTszCp3zQsybpaSp1sTZms1FYg6NABKJqaoGgW/zVDoWuW/lRa/7+pCUGGFihqa6Hcsb1tH47N9de7f4ed05Y5tP/NsmEYnhwlnX1S26j3q3li8ESe6WTwRB5X1koBClCAAhSgAAUoQAEKUIAC3wqIlMknKo5iQ/4a7C0RKZPPdUiZLLL5ZMUOwdQBM7AkchpmHKtA0padCN6WA0Vjg1uOp4ZPxtMPveLwnvjwIDx1wxgEq5VobjWhRd+29cgfLgZP5JlFBk/kcWWtFKAABShAAQpQgAIUoAAFKOBAQKRHPlZxuC1lcslu5NVd7JAyOSooGkNihmKBZSCyc4Hpm04i+vhpp6YWhQI//dOXqI1JdFh27tAE/HDmQJgtFtQ2GpzW21cKMHgiz0wxeCKPK2ulAAUoQAEKUIACFKAABShAATcFaltqcKBsDzZIKZP3oagu3yZlsgKJQbFYhIGYmWfAuJwLmF6gQ5CdRSP/vuZefL7iHqetv377JASplahrMsDkJ/mLGTxxOu0eFWDwxCM23kQBClCAAhSgAAUoQAEKUIAC3SFQ1liCfaW7pYDKuepTuFRfiCZDU3vTmQ3RmF5ixsILDVh5AgjXAzVR8fjpc18DCtvjZL/b20evHimlMW5qMaLV4B+Zdxg8keepZPBEHlfWSgEKUIACFKAABShAAQpQgAI+FgjWKBEeosZXp47gz1u/xuXW46g2nEGTuQBmtOLnh6/D1blFmHnhDJ6763FcnLjQYQ/unJGJecMS0dxqRIuewRNPp+v999+Xbl21apXbVXzwwQewWCwe3et2Y17cwOCJF3i8lQIUoAAFKEABClCAAhSgAAW6T8AaPNl2Xov3dhd0aLjeWIAg9EO9vg6Nuhoka6sQNny2w87dMCEF14wbAJ3eBF2rfxway5Un8jyPDJ7I48paKUABClCAAhSgAAUoQAEKUMDHAuJ8kohQNXK1TXh6jfPDY501//NFQzA+LcavMu4weOJs1j17ncETz9x4FwUoQAEKUIACFKAABShAAQp0s4BKqUB0uAZGswX3f3AQFot3Hfjz98YhNiwI9c0GGE1eVuZdV3x2N4MnPqPsUBGDJ/K4slYKUIACFKAABShAAQpQgAIUkEEgNiJIOgf2sS9OorRW53ELoUEqvLZyIkTIpKZB73E9ve1GBk/kmREGT+RxZa0UoAAFKEABClCAAhSgAAUoIINAaLAKIvBxsKAaf92a63ELK6emI3tkPynLjsi24y8XgyfyzCSDJ/K4slYKUIACFKAABShAAQpQgAIUkEFArDqJEatPAHywtxA5ZyvcbmVSeix+unCwdF9tox5m/9ixI42HwRO3HweXbmDwxCUmFqIABShAAQpQgAIUoAAFKECB3iIQEqRCWLAKRrMZr265iOPFdS53bXBSBH65ZBiC1Uq/yrJjBWDwxOVHwa2CDJ64xcXCFKAABShAAQpQgAIUoAAFKNAbBETWHZF9R1xbz2nx0YEi6I3mLrumVipww8QULB3VH8r/f2aKOCBWHBTrbxeDJ/LMKIMn8riyVgpQgAIUoAAFKEABClCAAhSQWSAiRI0gTVsARdvQig2nLyO3ohFF1U3SVhyxxe9zInYAAAnDSURBVCc9LgyDEiOwcHgSBsSESmUNRjMadP5zzoktM4Mn8jx0DJ7I48paKUABClCAAhSgAAUoQAEKUKAbBMThseIQWdvLYDKjuEaHlJjQ9tUp1td1ehN0raZu6FnPNMHgiTzuDJ7I48paKUABClCAAhSgAAUoQAEKUKCbBMQKExFEUauUUKvEUbIdL5PZAoPJgha9CWZ/Oh3Wji+DJ/I8dAyeyOPKWilAAQpQgAIUoAAFKEABClCgBwRE6EQEU5RKhbR1x9+DJZ2JGTyR56Fj8EQeV9ZKAQpQgAIUoAAFKEABClCAAhTodgEGT+QhZ/BEHlfWSgEKUIACFKAABShAAQpQgAIU6HaBQAyejJr/Q5za+q6s1m4FT0SHbC9XO2dvIJ3rstZrrbO0SifrwFk5BShAAQpQgAIUoAAFKEABClDA3wQCKXhiG1dwNT7h6Xy7HDzpKgDiqIOOBuIsMsTgiadT6rv7Ft/0Y2z87G++q9CPapLbxrZ+udvyo2nhUChAAQpQgAIUoAAFKBDwAoEUPLFOtrP4gi8eClmDJ44G4mxwtsGTrj488kOlLx6BruuQy1eueuXV6Fi7O2Nwp6y9MXh7f3e6sC0KUIACFKAABShAAQpQoGcFGDyRx79Hgyedh2S7ioXBE3km3J1a5frQLle97ozN27LujMGdsgyeeDszvJ8CFKAABShAAQpQgAKBLdBTwZPjx49j3LhxbuMfO3YMY8eOxapVq9y+13qDs8UZHldsc2OPBU/sdd52wJ4ET8SHVNvLdstJ5w+w9v7f2b3W+rvaytKT7VvHY9uHzv101D8x9s6vi3/rbNiVkb377Tk5asNZ/zo/M868ve2r7f2e2ng6Xkfbdtx18sUXCtZBAQpQgAIUoAAFKEABCvQNgZ4InogAiPjP00sEXWwDL12dkSrqt3d0SLcFT1zpmCdnnrgbBfImeGLvt/vOPoBaP9y7cm/nQIK9D/L2ghVdteHsTIvOr7vSvr1ghztjdKf/1mCJo/q7euM487be52jFhruvuePt7dx6atNVH5313dMvULyPAhSgAAUoQAEKUIACFPA/gZ4InvS0YrcFT1wZaE8HT7rqo6vBAdsPtM5WoXjy4deVgIDt6hBHq2LkaN9Z/+R4ncGTtsN2HQV6bI0YPHHlKxHLUIACFKAABShAAQpQgAKOBBg8kef58Om2na6iPa4GXuRceeIseGKP151VFc6CDz3dvrP+ufK6IyPr+KxlHGXpcdaWtQ5nQQfb7SuOthd17pO9rTSijKPtWM5W5Xjy/Djb0uNo1ZIrzvJ8yWCtFKAABShAAQpQgAIUoEBvFgik4Im9XTRypSx2OXgiHo7OHevcqc5BEmcDcVSfu2eeuPKB3J2VH7ZvBmcf4m0DI47u68n2nfl48rqjLxjebKtxNXjSlbWz+XL2eudxeWvj7H5743V1q467Y+nNX+TZNwpQgAIUoAAFKEABClDAe4FACp54r+V6DW4FT1yv1vuScgRPXA1ydC7nygdUTz4gOwoSuPrh2Zs6HLVhXRXhzrYoVwNO3lh19WQ583LndWfBE3dtPBmvs/56EmDy/l3JGihAAQpQgAIUoAAFKECB3i7A4Ik8M+Q3wRNrwMOWqatsL65kgXF2Jom96ei8DaM723flA7qz/nXeBtO5Tkf3O6vbXkDC+m+2ARpn82cbNHBU1ll/nL3urL/u2HR+NrsaryhnL1jVOZDiqpE8XzJYKwUoQAEKUIACFKAABSjQmwUYPJFndvpE8ESeobNWClCAAhSgAAUoQAEKUIACFKCAfwkweCLPfDJ4Io8ra6UABShAAQpQgAIUoAAFKEABCnS7AIMn8pAzeCKPK2ulAAUoQAEKUIACFKAABShAAQp0uwCDJ/KQ99rgiTzDZa0UoAAFKEABClCAAhSgAAUoQAEKUMA9AQZP3PNiaQpQgAIUoAAFKEABClCAAhSgAAUCTIDBkwCbcA6XAhSgAAUoQAEKUIACFKAABShAAfcEGDxxz4ulKUABClCAAhSgAAUoQAEKUIACFAgwAQZPeuGEj5r/ww69OrX1XZd7Ke51p7zLFbMg3J0Xd8uT2H0Bd43dLe9+j3iHEPDUmV+/5H9+PJ0b+XsWGC146s/3hnzPh7tz4m55+Xru3zW76+xuef/Wk2903jjz65h888Kau0+AwZPus3apJXtfWFz9YmP9gsbgiUvUbhVyd17cLe9WZ1hYEnDX2N3yZPZMwBNn2x/G+PXLM3dX7vJkblypl2VcE/DEn+8N12w9LeXunLhb3tN+Bfp97jq7Wz7QfT0dvzfO/IziqTrv620CDJ70shnx9AuT9T5XAy29bNi9vjuezovtwDg3vp1md+fE3fK+7W3g1OaNM98j8j4n3syNvD0LjNq98ed7Q55nxN05cbe8PL32/1p94cz3jO+fE0/nhZ9RfD8XrLHnBBg86Tl7uy178oXJ9h5+s5BnQj2Zl8494dz4dm44J7719FVt3swL3yO+mgX79XgzN/L2LDBq98af7w15nhFv5sTaI86N7+eG8+J7U1/U6Mm88DOKL+RZR28SYPCkN82GD7Yi8Ju4PBPqyTcM0RNxn/XidgTfzo2nc8IfeH07D64ECV39uuRqOXlH4L+1e/ue8V+Z7hmZN/58b8gzR97MifV7PL+3+35uPJ0X/szl+7mwrdHdeelcnl/H5J0f1t49AgyedI+z1IrtF/XOzVq/+XryhamrIfAbumuTK8e82GuZ3zRcmw+53iu2QRPxd74/XJ+Pznb27vT0a5izH8zc7yXv6ErA3e8vlPStgDf+/P7h27mw/ZrW+XuBK9bWnxv4faR3zQu/n8gzH56+X1z5+VreHrN2CvhegMET35t6VaM3P1xZP3Tym7lXU2D3Zm/nhXPTO+bElR+Kfd/TwKrRm/cK50feZ8WbuZG3Z4FRuzf+fG/I84x4MiecC3nmwlngw113d8vLP6q+34In7xdn89r3VTiCQBNg8KSXzbgrX5gcfUPgNwt5JtTdeXGlvDw9DZxaXTG2LcP3Rvc8G+7OC3+w6p556SqAy/dF7/Lvaj44T/LMk7tfrzgP8sxD51p9MS+cK9/Plbvz4sq8+r6XrJEC8goweCKvr0e1d17m5s6SUn6z8IjcpZvcnRdn5V1qlIUcCjgz7hw8sVcZV2r5/iFzZ16sH+o794Lz4vt5sWdNZ3mcu6qV743u9XalNXfmpHNZa/18H7ki7V4Zd+aFX9vcs/WmtLvzYtsWP6N4I897e4sAgye9ZSbYDwpQgAIUoAAFKEABClCAAhSgAAV6pQCDJ71yWtgpClCAAhSgAAUoQAEKUIACFKAABXqLwP8D8Z2+tRQ0xuUAAAAASUVORK5CYII=", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "analyzer.plot_metabolic_network(metabolite_ids=[\"nh4_e\"],gene_names=['pfkB'],reaction_ids=['TALA'])" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.4" } }, "nbformat": 4, "nbformat_minor": 5 }